Bi-Ligand Modification of Nanoparticles: An Effective Tool for Surface-Enhanced Raman Spectrometry in Salinated Environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO:68081715
Akademie Věd České Republiky
CEITEC 2020 (LQ1601)
Ministry of Education, Youths and Sports of the Czech Republic
No. 17-01995s
Grantová Agentura České Republiky
PubMed
31491895
PubMed Central
PMC6781045
DOI
10.3390/nano9091259
PII: nano9091259
Knihovny.cz E-zdroje
- Klíčová slova
- SERS, ionic strength, modification, myoglobin, nanoparticles, saline solution, silver, sintering, stability, surface-enhanced Raman spectrometry,
- Publikační typ
- časopisecké články MeSH
Elimination of massive aggregation of nanoparticles in the sample of high ionic strength is a prerequisite for the sensitive analysis through a surface-enhanced Raman spectrometry (SERS). We present a system of silver colloid modification composed of two thiolated modifiers (3-mercaptopropionic acid and thiolated polyethylene glycol) both creating a strong Ag-S bond. At their optimal molar ratio, the polymer acts as a steric barrier preventing direct nanoparticle-nanoparticle interaction, while the low-molecular organic acid creates areas accessible for the analyte molecules. Thus, this approach is an excellent tool for sustaining both the colloidal stability and SERS sensitivity. The functionality of the system was demonstrated on the SERS analysis of myoglobin from a saline solution. The favorable creation of hot spots was achieved by laser-induced sintering.
Zobrazit více v PubMed
Fleischmann M., Hendra P., Mcquillan A. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974;26:163–166. doi: 10.1016/0009-2614(74)85388-1. DOI
Tycova A., Kleparnik K. Combination of liquid-based column separations with surface-enhanced Raman spectroscopy. J. Sep. Sci. 2019;42:431–444. doi: 10.1002/jssc.201800852. PubMed DOI
Gao J., Huang X., Liu H., Zan F., Ren J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging. Langmuir. 2012;28:4464–4471. doi: 10.1021/la204289k. PubMed DOI
Kvitek L., Panáček A., Soukupová J., Kolář M., Večeřová R., Prucek R., Holecová M., Zbořil R. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs) J. Phys. Chem. C. 2008;112:5825–5834. doi: 10.1021/jp711616v. DOI
Lévy R., Thanh N.T.K., Doty R.C., Hussain I., Nichols R.J., Schiffrin D.J., Brust M., Fernig D.G. Rational and Combinatorial Design of Peptide Capping Ligands for Gold Nanoparticles. J. Am. Chem. Soc. 2004;126:10076–10084. doi: 10.1021/ja0487269. PubMed DOI
Lee P., Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982;86:3391–3395. doi: 10.1021/j100214a025. DOI
Turkevich J., Stevenson P.C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951;11:55–75. doi: 10.1039/df9511100055. DOI
Pamies R., Cifre J., Fernández Espín V., Collado-González M.M., Díaz Baños F.G., Torre J. Aggregation behaviour of gold nanoparticles in saline aqueous media. J. Nanopart. Res. 2014;16:2376. doi: 10.1007/s11051-014-2376-4. DOI
Leopold L., Todor I.-S., Diaconeasa Z., Rugină D., Ştefancu A., Leopold N., Coman C. Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids Surf. A Physicochem. Eng. Asp. 2017;532:70–76. doi: 10.1016/j.colsurfa.2017.06.061. DOI
Kennedy B.J., Spaeth S., Dickey M., Carron K.T. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J. Phys. Chem. B. 1999;103:3640–3646. doi: 10.1021/jp984454i. DOI
Jing L., Shi Y., Cui J., Zhang X., Zhan J. Hydrophobic gold nanostructures via electrochemical deposition for sensitive SERS detection of persistent toxic substances. RSC Adv. 2015;5:13443–13450. doi: 10.1039/C4RA14089C. DOI
Bonifacio A., Cervo S., Sergo V. Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 2015;407:8265–8277. doi: 10.1007/s00216-015-8697-z. PubMed DOI
Prikryl J., Kleparnik K., Foret F. Photodeposited silver nanoparticles for on-column surface-enhanced Raman spectrometry detection in capillary electrophoresis. J. Chromatogr. A. 2012;1226:43–47. doi: 10.1016/j.chroma.2011.07.045. PubMed DOI
Bonifacio A., van der Sneppen L., Gooijer C., van der Zwan G. Citrate-Reduced Silver Hydrosol Modified with ω-Mercaptoalkanoic Acids Self-Assembled Monolayers as a Substrate for Surface-Enhanced Resonance Raman Scattering. A Study with Cytochrome C. Langmuir. 2004;20:5858–5864. doi: 10.1021/la049786v. PubMed DOI
Marques F.C., Oliveira G.P., Teixeira R.A.R., Justo R.M.S., Neves T.B.V., Andrade G.F.S. Characterization of 11-mercaptoundecanoic and 3-mercaptopropionic acids adsorbed on silver by surface-enhanced Raman scattering. Vib. Spectrosc. 2018;98:139–144. doi: 10.1016/j.vibspec.2018.07.015. DOI
Labouta H.I., Gomez-Garcia M.J., Sarsons C.D., Nguyen T., Kennard J., Ngo W., Terefe K., Iragorri N., Lai P., Rinker K.D., et al. Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC Adv. 2018;8:7697–7708. doi: 10.1039/C7RA13438J. PubMed DOI PMC
Peng P., Hu A., Gerlich A.P., Zou G., Liu L., Zhou Y.N. Joining of silver nanomaterials at low temperatures: Processes, properties, and applications. ASC Appl. Mater. Interfaces. 2015;23:12597–12618. doi: 10.1021/acsami.5b02134. PubMed DOI
Peng Z., Spliethoff B., Tesche B., Walther T., Kleinermanns K. Laser-Assisted Synthesis of Au−Ag Alloy Nanoparticles in Solution. J. Phys. Chem. B. 2006;110:2549–2554. doi: 10.1021/jp056677w. PubMed DOI
El-Said W.A., Fouad D.M., El-Safty S.A. Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sens. Actuator B Chem. 2016;228:401–409. doi: 10.1016/j.snb.2016.01.041. DOI
Bizzarri A.R., Cannistraro S. Surface-enhanced resonance Raman spectroscopy signals from single myoglobin molecules. Appl. Spectrosc. 2002;56:1531–1537. doi: 10.1366/000370202321115977. DOI
Stewart A., Murray S., Bell S.E.J. Simple preparation of positively charged silver nanoparticles for detection of anions by surface-enhanced Raman spectroscopy. Analyst. 2015;140:2988–2994. doi: 10.1039/C4AN02305F. PubMed DOI
Xi W., Shrestha B.K., Haes A.J. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal. Chem. 2018;90:128–143. doi: 10.1021/acs.analchem.7b04225. PubMed DOI
Lu Y., Zhou T., You R., Wu Y., Shen H., Feng S., Su J. Fabrication and Characterization of a Highly-Sensitive Surface-Enhanced Raman Scattering Nanosensor for Detecting Glucose in Urine. Nanomaterials. 2018;8:629. doi: 10.3390/nano8080629. PubMed DOI PMC