Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods

. 2019 Sep 21 ; 12 (19) : . [epub] 20190921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31546647

Melting metallurgy is still the most frequently used and simplest method for the processing of metallic materials. Some of the materials (especially intermetallics) are very difficult to prepare by this method due to the high melting points, poor fluidity, or formation of cracks and pores after casting. This article describes the processing of Ti-Al-Si alloys by arc melting, and shows the microstructure, phase composition, hardness, fracture toughness, and compression tests of these alloys. These results are compared with the same alloys prepared by powder metallurgy by the means of a combination of mechanical alloying and spark plasma sintering. Ti-Al-Si alloys processed by melting metallurgy are characterized by a very coarse structure with central porosity. The phase composition is formed by titanium aluminides and titanium silicides, which are full of cracks. Ti-Al-Si alloys processed by the powder metallurgy route have a relatively homogeneous fine-grained structure with higher hardness. However, these alloys are very brittle. On the other hand, the fracture toughness of arc-melted samples is immeasurable using Palmqvist's method because the crack is stopped by a large area of titanium aluminide matrix.

Zobrazit více v PubMed

Clemens H., Mayer S. Intermetallic titanium aluminides in aerospace applications–processing, microstructure and properties. Mater. High Temp. 2016;33:560–570. doi: 10.1080/09603409.2016.1163792. DOI

Brotzu A., Felli F., Marra F., Pilone D., Pulci G. Mechanical properties of a TiAl-based alloy at room and high temperatures. Mater. Sci. Technol. 2018;34:1847–1853. doi: 10.1080/02670836.2018.1491931. DOI

Erdely P., Staron P., Maawad E., Schell N., Klose J., Clemens H., Mayer S. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy. Mater. Des. 2017;131:286–296. doi: 10.1016/j.matdes.2017.06.030. DOI

Schwaighofer E., Clemens H., Lindemann J., Stark A., Mayer S. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy. Mater. Sci. Eng. A. 2014;614:297–310. doi: 10.1016/j.msea.2014.07.040. DOI

Liss K.D., Funakoshi K.I., Dippenaar R.J., Higo Y., Shiro A., Reid M., Suzuki H., Shobu T., Akita K. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics. Metals. 2016;6:165. doi: 10.3390/met6070165. DOI

Terner M., Biamino S., Baudana G., Penna A., Fino P., Pavese M., Ugues D., Badini C. Initial Oxidation Behavior in Air of TiAl-2Nb and TiAl-8Nb Alloys Produced by Electron Beam Melting. J. Mater. Eng. Perform. 2015;24:3982–3988. doi: 10.1007/s11665-015-1663-2. DOI

Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH (John Wiley); Weinheim, Germany: Chichester, UK: 2003.

Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19‒21 May 2009.

Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics. 2006;14:1123–1129. doi: 10.1016/j.intermet.2006.01.064. DOI

Guan Z.Q., Pfullmann T., Oehring M., Bormann R. Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends. J. Alloys Compd. 1997;252:245–251. doi: 10.1016/S0925-8388(96)02720-X. DOI

Suryanarayana C. Synthesis of nanocomposites by mechanical alloying. J. Alloys Compd. 2011;509(Suppl. 1):S229–S234. doi: 10.1016/j.jallcom.2010.09.063. DOI

Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering. Chem. Listy. 2009;103:1022–1026.

Chen G., Peng Y., Zheng G., Qi Z., Wang M., Yu H., Dong C., Liu C.T. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 2016;15:876. doi: 10.1038/nmat4677. PubMed DOI

Tian Y., Ding J., Huang X., Zheng H.R., Song K., Lu S.Q., Zeng X.G. Plastic deformation mechanisms of tension-compression asymmetry of nano-polycrystalline tial: Twin boundary spacing and temperature effect. Comput. Mater. Sci. 2020;171:109218. doi: 10.1016/j.commatsci.2019.109218. DOI

Appel F., Clemens H., Fischer F.D. Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 2016;81:55–124. doi: 10.1016/j.pmatsci.2016.01.001. DOI

Rao K.P., Du Y.J., Chung J.C.Y., Lau K.C. In situ composite formation in Ti Al Si ternary system. J. Mater. Process. Technol. 1999;89–90:361–366. doi: 10.1016/S0924-0136(99)00012-6. DOI

Kvanin V.L., Balikhina N.T., Vadchenko S.G., Borovinskaya I.P., Sychev A.E. Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction. Inorg. Mater. 2008;44:1194–1198. doi: 10.1134/S0020168508110095. DOI

Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI

Lapin J. TiAl-based alloys: Present status and future perspectives; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19‒21 May 2009.

Zemčík L., Dlouhý A., Król S., Prażmowskic M. Vacuum Metallurgy of TiAl Intermetallics; Proceedings of the Metal 2005;

Sugilal G., Jha J., Shashikumar, Rao M.H., Banerjee K., Dey G.K. Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys. Pt BMater. Today Proc. 2016;3:2942–2950. doi: 10.1016/j.matpr.2016.09.007. DOI

Guo J., Su Y., Jia J., Ding H., Liu Y., Ren Z. Mechanism of skull formation during induction skull melting of intermetallic compounds. Int. J. Cast Met. Res. 1999;12:35–40.

Novák P., Michalcová A., Šerák J., Vojtěch D., Fabián T., Randáková S., Průša F., Knotek V., Novák M. Preparation of Ti–Al–Si alloys by reactive sintering. J. Alloys Compd. 2009;470:123–126. doi: 10.1016/j.jallcom.2008.02.046. DOI

Noda T. Application of cast gamma TiAl for automobiles. Intermetallics. 1998;6:709–713. doi: 10.1016/S0966-9795(98)00060-0. DOI

Chesnutt J.C. Titanium Aluminides for Aerospace Applications. [(accessed on 9 September 2019)]; Available online: https://www.tms.org/Superalloys/10.7449/1992/Superalloys_1992_381_389.pdf. DOI

Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloys Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI

Knaislová A., Novák P., Cygan S., Jaworska L., Cabibbo M. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys. Materials. 2017;10:465. doi: 10.3390/ma10050465. PubMed DOI PMC

Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI

Novák P. Příprava, vlastnosti a použití intermetalických sloučenin. Chem. Listy. 2012;106:884–889.

Vojtěch D., Lejček P., Kopeček J., Bialasová K. Směrová krystalizace eutektik systému Ti-Al-Si; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.

Knaislová A., Linhart J., Novák P., Průša F., Kopeček J., Laufek F., Vojtěch D. Preparation of TiAl15Si15 intermetallic alloy by mechanical alloying and the spark plasma sintering method. Powder Metall. 2019;62:56–60. doi: 10.1080/00325899.2019.1569812. DOI

Wagner W.C., Chu T.M. Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics. J. Prosthet. Dent. 1996;76:140–144. doi: 10.1016/S0022-3913(96)90297-8. PubMed DOI

Luo Q., Li Q., Zhang J.Y., Chen S.L., Chou K.C. Experimental investigation and thermodynamic calculation of the Al–Si–Ti system in Al-rich corner. J. Alloys Compd. 2014;602:58–65. doi: 10.1016/j.jallcom.2014.02.107. DOI

Rao K.P., Zhou J.B. Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability. Mater. Sci. Eng. A. 2002;338:282–298. doi: 10.1016/S0921-5093(02)00095-3. DOI

Vyas A., Rao K.P., Prasad Y.V.R.K. Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders. J. Alloys Compd. 2009;475:252–260. doi: 10.1016/j.jallcom.2008.07.094. DOI

Stoloff N.S., Sikka V.K. Physical Metallurgy and Processing of Intermetallic Compounds. Chapman & Hall; London, UK: 1996.

Liang G., Meng Q., Li Z., Wang E. Consolidation of nanocrystalline Al-Ti alloy powders synthesized by mechanical alloying. Nanostruct. Mater. 1995;5:673–678. doi: 10.1016/0965-9773(95)00276-K. DOI

Calderon H.A., Garibay-Febles V., Umemoto M., Yamaguchi M. Mechanical properties of nanocrystalline Ti–Al–X alloys. Mater. Sci. Eng. A. 2002;329–331:196–205. doi: 10.1016/S0921-5093(01)01568-4. DOI

Haušild P., Karlík M., Čech J., Průša F., Nová K., Novák P., Minárik P., Kopeček J. Preparation of Fe-Al-Si Intermetallic Compound by Mechanical Alloying and Spark Plasma Sintering. Acta Phys. Pol. A. 2018;134 doi: 10.12693/APhysPolA.134.724. DOI

Bester G., Fähnle M. Interpretation of ab initio total energy results in a chemical language: II. Stability of TiAl3 and ScAl3. J. Phys. Condens. Matter. 2001;13:11551. doi: 10.1088/0953-8984/13/50/314. DOI

Music D., Schneider J.M. Effect of transition metal additives on electronic structure and elastic properties of TiAl and Ti3Al. Phys. Rev. B. 2006;74:174110. doi: 10.1103/PhysRevB.74.174110. DOI

Huy T.D., Fujiwara H., Yoshida R., Binh D.T., Miyamoto H. Microstructure and Mechanical Properties of TiAl3/Al2O3 in situ Composite by Combustion Process. Mater. Trans. 2014;55:1091–1093. doi: 10.2320/matertrans.Y-M2014823. DOI

Tlotleng M., Lengopeng T., Pityana S. Evaluation of the microstructure and microhardness of laser-fabricated titanium aluminate coatings; Proceedings of the AMI Ferrous and Base Metals Development Network Conference 2016; Durban, South Africa. 19–21 October 2016.

Frommeyer G., Rosenkranz R. Nato Science Series II. Mathematics, Physics and Chemistry. Springer; Dordrecht, The Netherlands: 2004. In Structures and Properties of the Refractory Silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) Eutectic Alloys; pp. 287–308.

Molnárová O., Málek P., Veselý J., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials. 2018;11:547. doi: 10.3390/ma11040547. PubMed DOI PMC

Knaislová A., Šimůnková V., Novák P., Průša F., Cygan S., Jaworska L. The optimization of sintering conditions for the preparation of Ti-Al-Si alloys. Manuf. Technol. 2017;17:483–488.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Development of TiAl-Si Alloys-A Review

. 2021 Feb 22 ; 14 (4) : . [epub] 20210222

Structure and Properties of Cast Ti-Al-Si Alloys

. 2021 Feb 08 ; 14 (4) : . [epub] 20210208

Advanced Powder Metallurgy Technologies

. 2020 Apr 08 ; 13 (7) : . [epub] 20200408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...