Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31546647
PubMed Central
PMC6803991
DOI
10.3390/ma12193084
PII: ma12193084
Knihovny.cz E-zdroje
- Klíčová slova
- casting, powder metallurgy, titanium aluminides and silicides,
- Publikační typ
- časopisecké články MeSH
Melting metallurgy is still the most frequently used and simplest method for the processing of metallic materials. Some of the materials (especially intermetallics) are very difficult to prepare by this method due to the high melting points, poor fluidity, or formation of cracks and pores after casting. This article describes the processing of Ti-Al-Si alloys by arc melting, and shows the microstructure, phase composition, hardness, fracture toughness, and compression tests of these alloys. These results are compared with the same alloys prepared by powder metallurgy by the means of a combination of mechanical alloying and spark plasma sintering. Ti-Al-Si alloys processed by melting metallurgy are characterized by a very coarse structure with central porosity. The phase composition is formed by titanium aluminides and titanium silicides, which are full of cracks. Ti-Al-Si alloys processed by the powder metallurgy route have a relatively homogeneous fine-grained structure with higher hardness. However, these alloys are very brittle. On the other hand, the fracture toughness of arc-melted samples is immeasurable using Palmqvist's method because the crack is stopped by a large area of titanium aluminide matrix.
Zobrazit více v PubMed
Clemens H., Mayer S. Intermetallic titanium aluminides in aerospace applications–processing, microstructure and properties. Mater. High Temp. 2016;33:560–570. doi: 10.1080/09603409.2016.1163792. DOI
Brotzu A., Felli F., Marra F., Pilone D., Pulci G. Mechanical properties of a TiAl-based alloy at room and high temperatures. Mater. Sci. Technol. 2018;34:1847–1853. doi: 10.1080/02670836.2018.1491931. DOI
Erdely P., Staron P., Maawad E., Schell N., Klose J., Clemens H., Mayer S. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy. Mater. Des. 2017;131:286–296. doi: 10.1016/j.matdes.2017.06.030. DOI
Schwaighofer E., Clemens H., Lindemann J., Stark A., Mayer S. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy. Mater. Sci. Eng. A. 2014;614:297–310. doi: 10.1016/j.msea.2014.07.040. DOI
Liss K.D., Funakoshi K.I., Dippenaar R.J., Higo Y., Shiro A., Reid M., Suzuki H., Shobu T., Akita K. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics. Metals. 2016;6:165. doi: 10.3390/met6070165. DOI
Terner M., Biamino S., Baudana G., Penna A., Fino P., Pavese M., Ugues D., Badini C. Initial Oxidation Behavior in Air of TiAl-2Nb and TiAl-8Nb Alloys Produced by Electron Beam Melting. J. Mater. Eng. Perform. 2015;24:3982–3988. doi: 10.1007/s11665-015-1663-2. DOI
Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH (John Wiley); Weinheim, Germany: Chichester, UK: 2003.
Novák P., Průša F., Šerák J., Vojtěch D., Michalcová A. Oxidation resistance and thermal stability of Ti-Al-Si alloys produced by reactive sintering; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19‒21 May 2009.
Lasalmonie A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics. 2006;14:1123–1129. doi: 10.1016/j.intermet.2006.01.064. DOI
Guan Z.Q., Pfullmann T., Oehring M., Bormann R. Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends. J. Alloys Compd. 1997;252:245–251. doi: 10.1016/S0925-8388(96)02720-X. DOI
Suryanarayana C. Synthesis of nanocomposites by mechanical alloying. J. Alloys Compd. 2011;509(Suppl. 1):S229–S234. doi: 10.1016/j.jallcom.2010.09.063. DOI
Novák P., Vojtěch D., Šerák J., Kubásek J., Průša F., Knotek V., Michalcová A., Novák M. Synthesis of Intermediary Phases in Ti-Al-Si System by Reactive Sintering. Chem. Listy. 2009;103:1022–1026.
Chen G., Peng Y., Zheng G., Qi Z., Wang M., Yu H., Dong C., Liu C.T. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 2016;15:876. doi: 10.1038/nmat4677. PubMed DOI
Tian Y., Ding J., Huang X., Zheng H.R., Song K., Lu S.Q., Zeng X.G. Plastic deformation mechanisms of tension-compression asymmetry of nano-polycrystalline tial: Twin boundary spacing and temperature effect. Comput. Mater. Sci. 2020;171:109218. doi: 10.1016/j.commatsci.2019.109218. DOI
Appel F., Clemens H., Fischer F.D. Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 2016;81:55–124. doi: 10.1016/j.pmatsci.2016.01.001. DOI
Rao K.P., Du Y.J., Chung J.C.Y., Lau K.C. In situ composite formation in Ti Al Si ternary system. J. Mater. Process. Technol. 1999;89–90:361–366. doi: 10.1016/S0924-0136(99)00012-6. DOI
Kvanin V.L., Balikhina N.T., Vadchenko S.G., Borovinskaya I.P., Sychev A.E. Preparation of γ-TiAl intermetallic compounds through self-propagating high-temperature synthesis and compaction. Inorg. Mater. 2008;44:1194–1198. doi: 10.1134/S0020168508110095. DOI
Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14:1114–1122. doi: 10.1016/j.intermet.2005.10.019. DOI
Lapin J. TiAl-based alloys: Present status and future perspectives; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19‒21 May 2009.
Zemčík L., Dlouhý A., Król S., Prażmowskic M. Vacuum Metallurgy of TiAl Intermetallics; Proceedings of the Metal 2005;
Sugilal G., Jha J., Shashikumar, Rao M.H., Banerjee K., Dey G.K. Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys. Pt BMater. Today Proc. 2016;3:2942–2950. doi: 10.1016/j.matpr.2016.09.007. DOI
Guo J., Su Y., Jia J., Ding H., Liu Y., Ren Z. Mechanism of skull formation during induction skull melting of intermetallic compounds. Int. J. Cast Met. Res. 1999;12:35–40.
Novák P., Michalcová A., Šerák J., Vojtěch D., Fabián T., Randáková S., Průša F., Knotek V., Novák M. Preparation of Ti–Al–Si alloys by reactive sintering. J. Alloys Compd. 2009;470:123–126. doi: 10.1016/j.jallcom.2008.02.046. DOI
Noda T. Application of cast gamma TiAl for automobiles. Intermetallics. 1998;6:709–713. doi: 10.1016/S0966-9795(98)00060-0. DOI
Chesnutt J.C. Titanium Aluminides for Aerospace Applications. [(accessed on 9 September 2019)]; Available online: https://www.tms.org/Superalloys/10.7449/1992/Superalloys_1992_381_389.pdf. DOI
Knaislová A., Novák P., Cabibbo M., Průša F., Paoletti C., Jaworska L., Vojtěch D. Combination of reaction synthesis and Spark Plasma Sintering in production of Ti-Al-Si alloys. J. Alloys Compd. 2018;752:317–326. doi: 10.1016/j.jallcom.2018.04.187. DOI
Knaislová A., Novák P., Cygan S., Jaworska L., Cabibbo M. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys. Materials. 2017;10:465. doi: 10.3390/ma10050465. PubMed DOI PMC
Novák P., Kříž J., Průša F., Kubásek J., Marek I., Michalcová A., Voděrová M., Vojtěch D. Structure and properties of Ti–Al–Si-X alloys produced by SHS method. Intermetallics. 2013;39:11–19. doi: 10.1016/j.intermet.2013.03.009. DOI
Novák P. Příprava, vlastnosti a použití intermetalických sloučenin. Chem. Listy. 2012;106:884–889.
Vojtěch D., Lejček P., Kopeček J., Bialasová K. Směrová krystalizace eutektik systému Ti-Al-Si; Proceedings of the Metal 2009; Hradec nad Moravicí, Czech Republic. 19–21 May 2009.
Knaislová A., Linhart J., Novák P., Průša F., Kopeček J., Laufek F., Vojtěch D. Preparation of TiAl15Si15 intermetallic alloy by mechanical alloying and the spark plasma sintering method. Powder Metall. 2019;62:56–60. doi: 10.1080/00325899.2019.1569812. DOI
Wagner W.C., Chu T.M. Biaxial flexural strength and indentation fracture toughness of three new dental core ceramics. J. Prosthet. Dent. 1996;76:140–144. doi: 10.1016/S0022-3913(96)90297-8. PubMed DOI
Luo Q., Li Q., Zhang J.Y., Chen S.L., Chou K.C. Experimental investigation and thermodynamic calculation of the Al–Si–Ti system in Al-rich corner. J. Alloys Compd. 2014;602:58–65. doi: 10.1016/j.jallcom.2014.02.107. DOI
Rao K.P., Zhou J.B. Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability. Mater. Sci. Eng. A. 2002;338:282–298. doi: 10.1016/S0921-5093(02)00095-3. DOI
Vyas A., Rao K.P., Prasad Y.V.R.K. Mechanical alloying characteristics and thermal stability of Ti–Al–Si and Ti–Al–Si–C powders. J. Alloys Compd. 2009;475:252–260. doi: 10.1016/j.jallcom.2008.07.094. DOI
Stoloff N.S., Sikka V.K. Physical Metallurgy and Processing of Intermetallic Compounds. Chapman & Hall; London, UK: 1996.
Liang G., Meng Q., Li Z., Wang E. Consolidation of nanocrystalline Al-Ti alloy powders synthesized by mechanical alloying. Nanostruct. Mater. 1995;5:673–678. doi: 10.1016/0965-9773(95)00276-K. DOI
Calderon H.A., Garibay-Febles V., Umemoto M., Yamaguchi M. Mechanical properties of nanocrystalline Ti–Al–X alloys. Mater. Sci. Eng. A. 2002;329–331:196–205. doi: 10.1016/S0921-5093(01)01568-4. DOI
Haušild P., Karlík M., Čech J., Průša F., Nová K., Novák P., Minárik P., Kopeček J. Preparation of Fe-Al-Si Intermetallic Compound by Mechanical Alloying and Spark Plasma Sintering. Acta Phys. Pol. A. 2018;134 doi: 10.12693/APhysPolA.134.724. DOI
Bester G., Fähnle M. Interpretation of ab initio total energy results in a chemical language: II. Stability of TiAl3 and ScAl3. J. Phys. Condens. Matter. 2001;13:11551. doi: 10.1088/0953-8984/13/50/314. DOI
Music D., Schneider J.M. Effect of transition metal additives on electronic structure and elastic properties of TiAl and Ti3Al. Phys. Rev. B. 2006;74:174110. doi: 10.1103/PhysRevB.74.174110. DOI
Huy T.D., Fujiwara H., Yoshida R., Binh D.T., Miyamoto H. Microstructure and Mechanical Properties of TiAl3/Al2O3 in situ Composite by Combustion Process. Mater. Trans. 2014;55:1091–1093. doi: 10.2320/matertrans.Y-M2014823. DOI
Tlotleng M., Lengopeng T., Pityana S. Evaluation of the microstructure and microhardness of laser-fabricated titanium aluminate coatings; Proceedings of the AMI Ferrous and Base Metals Development Network Conference 2016; Durban, South Africa. 19–21 October 2016.
Frommeyer G., Rosenkranz R. Nato Science Series II. Mathematics, Physics and Chemistry. Springer; Dordrecht, The Netherlands: 2004. In Structures and Properties of the Refractory Silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) Eutectic Alloys; pp. 287–308.
Molnárová O., Málek P., Veselý J., Minárik P., Lukáč F., Chráska T., Novák P., Průša F. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy. Materials. 2018;11:547. doi: 10.3390/ma11040547. PubMed DOI PMC
Knaislová A., Šimůnková V., Novák P., Průša F., Cygan S., Jaworska L. The optimization of sintering conditions for the preparation of Ti-Al-Si alloys. Manuf. Technol. 2017;17:483–488.
Development of TiAl-Si Alloys-A Review
Structure and Properties of Cast Ti-Al-Si Alloys
Advanced Powder Metallurgy Technologies