LIPSS Structures Induced on Graphene-Polystyrene Composite
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-02482S
Czech Science Foundation
PubMed
31652672
PubMed Central
PMC6861962
DOI
10.3390/ma12213460
PII: ma12213460
Knihovny.cz E-resources
- Keywords
- laser exposure, nanocomposites, polymers,
- Publication type
- Journal Article MeSH
A laser induced periodic surface structure (LIPSS) on graphene doped polystyrene was prepared by the means of a krypton fluoride (KrF) laser with the wavelength of 248 nm and precisely desired physico-chemical properties were obtained for the structure. Surface morphology after laser modification of polystyrene (PS) doped with graphene nanoplatelets (GNP) was studied. Laser fluence values of modifying laser light varied between 0-40 mJ·cm-2 and were used on polymeric PS substrates doped with 10, 20, 30, and 40 wt. % of GNP. GNP were incorporated into PS substrate with the solvent casting method and further laser modification was achieved with the same amount of laser pulses of 6000. Formed nanostructures with a periodic pattern were examined by atomic force microscopy (AFM). The morphology was also studied with scanning electron microscopy SEM. Laser irradiation resulted in changes of chemical composition on the PS surface, such as growth of oxygen concentration. This was confirmed with energy-dispersive X-ray spectroscopy (EDS).
See more in PubMed
Mark J.E. Polymer data handbook. 2nd ed. Oxford University Press; New York, NY, USA: 2009.
Elashnikov R., Slepička P., Rimpelova S., Ulbrich P., Švorčík V., Lyutakov O. Temperature-responsive PLLA/PNIPAM nanofibers for switchable release. Mater. Sci. Eng. C. 2017;72:293–300. doi: 10.1016/j.msec.2016.11.028. PubMed DOI
Eslamian M., Zabihi F. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices. Nanoscale Res. Lett. 2015;10:462. doi: 10.1186/s11671-015-1168-9. PubMed DOI PMC
Soltani-Kordshuli F., Zabihi F., Eslamian M. Graphene-doped PEDOT: PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC) Eng. Sci. Technol. 2019;19:1216–1223.
Olean-Oliveira A., Teixeira M.F. Development of a nanocomposite chemiresistor sensor based on π-conjugated azo polymer and graphene blend for detection of dissolved oxygen. Sensors Actuators B Chem. 2018;271:353–357. doi: 10.1016/j.snb.2018.05.128. DOI
Slepička P., Michaljaničová I., Kasálková N.S., Kolska Z., Rimpelová S., Ruml T., Svorcik V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013;48:5871–5879. doi: 10.1007/s10853-013-7383-9. DOI
Slepička P., Michaljaničová I., Sajdl P., Fitl P., Svorcik V. Surface ablation of PLLA induced by KrF excimer laser. Appl. Surf. Sci. 2013;283:438–444. doi: 10.1016/j.apsusc.2013.06.127. DOI
Slepička P. Controlled biopolymer roughness induced by plasma and excimer laser treatment. Express Polym. Lett. 2013;7:950–958. doi: 10.3144/expresspolymlett.2013.92. DOI
Michaljaničová I., Slepička P., Heitz J., Barb R., Sajdl P., Svorcik V. Comparison of KrF and ArF excimer laser treatment of biopolymer surface. Appl. Surf. Sci. 2015;339:144–150. doi: 10.1016/j.apsusc.2015.02.137. DOI
Slepička P., Trostová S., Kasálkova N.S., Kolská Z., Sajdl P., Švorčík V. Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process. Polym. 2012;9:197–206. doi: 10.1002/ppap.201100126. DOI
Bolle M., Lazare S. Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 1993;69:31–37. doi: 10.1016/0169-4332(93)90478-T. DOI
Rebollar E., Perez S., Hernandez J.J., Martín-Fabiani I., Rueda D.R., Ezquerra T.A., Castillejo M. Assessment and Formation Mechanism of Laser-Induced Periodic Surface Structures on Polymer Spin-Coated Films in Real and Reciprocal Space. Langmuir. 2011;27:5596–5606. doi: 10.1021/la200451c. PubMed DOI
Rebollar E., Sanz M., Pérez S., Hernández M., Martín-Fabiani I., Rueda D.R., Ezquerra T.A., Domingo C., Castillejo M. Gold coatings on polymer laser induced periodic surface structures: Assessment as substrates for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 2012;14:15699–15705. doi: 10.1039/c2cp43049e. PubMed DOI
Borowiec A., Haugen H.K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 2003;82:4462. doi: 10.1063/1.1586457. DOI
Granados E., Martinez-Calderon M., Gomez M., Rodriguez A., Olaizola S.M. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS) Opt. Express. 2017;25:15330. doi: 10.1364/OE.25.015330. PubMed DOI
Bäuerle D.W. Laser Processing and Chemistry. 4th ed. Springer; Berlin, Germany: 2011.
Rebollar E., Castillejo M., Ezquerra T.A. Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur. Polym. J. 2015;73:162–174. doi: 10.1016/j.eurpolymj.2015.10.012. DOI
Reinhardt H., Hillebrecht P., Hampp N.A., Kim H.-C., Kim H. Photochemical Preparation of Sub-Wavelength Heterogeneous Laser-Induced Periodic Surface Structures. Adv. Mater. 2012;24:1994–1998. PubMed
Dinca V., Alloncle P., Delaporte P., Ion V., Rusen L., Filipescu M., Mustaciosu C., Luculescu C., Dinescu M. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response. Appl. Surf. Sci. 2015;352:82–90. doi: 10.1016/j.apsusc.2015.02.141. DOI
Daskalova A., Nathala C.S., Kavatzikidou P., Ranella A., Szoszkiewicz R., Husinsky W., Fotakis C. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response. Appl. Surf. Sci. 2016;382:178–191. doi: 10.1016/j.apsusc.2016.04.134. DOI
Turunen S., Kapyla E., Lähteenmäki M., Yla-Outinen L., Narkilahti S., Kellomäki M. Direct laser writing of microstructures for the growth guidance of human pluripotent stem cell derived neuronal cells. Opt. Lasers Eng. 2014;55:197–204. doi: 10.1016/j.optlaseng.2013.11.003. DOI
Kalachyova Y., Mares D., Lyutakov O., Koštejn M., Lapcak L., Svorcik V. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response. J. Phys. Chem. C. 2015;119:9506–9512. doi: 10.1021/acs.jpcc.5b01793. DOI
Kaimlová M., Nemogová I., Kolářová K., Slepička P., Švorčík V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Slepička P., Siegel J., Lyutakov O., Kasálková N.S., Kolská Z., Bačáková L., Švorčík V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Mohan V.B., Lau K.-T., Hui D., Bhattacharyya D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng. 2018;142:200–220. doi: 10.1016/j.compositesb.2018.01.013. DOI
Novoselov K., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Yang G.W. Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals. Prog. Mater. Sci. 2007;52:648–698. doi: 10.1016/j.pmatsci.2006.10.016. DOI
Intartaglia R., Daş G., Bagga K., Gopalakrishnan A., Genovese A., Povia M., Di Fabrizio E., Cingolani R., Diaspro A., Brandi F., et al. Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications. Phys. Chem. Chem. Phys. 2013;15:3075–3082. doi: 10.1039/C2CP42656K. PubMed DOI
Barberio M., Antici P. Laser-Plasma Driven Synthesis of Carbon-Based Nanomaterials. Sci. Rep. 2017;7:12009. doi: 10.1038/s41598-017-12243-4. PubMed DOI PMC
Rodríguez-Beltrán R.I., Hernandez M., Paszkiewicz S., Szymczyk A., Rosłaniec Z., Ezquerra T.A., Castillejo M., Moreno P., Rebollar E. Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite. Appl. Surf. Sci. 2018;436:1193–1199. doi: 10.1016/j.apsusc.2017.12.147. DOI
Surface activation of Hastalex by vacuum argon plasma for cytocompatibility enhancement
Carbon Transformation Induced by High Energy Excimer Treatment
KrF Laser and Plasma Exposure of PDMS-Carbon Composite and Its Antibacterial Properties
Carbon Nanostructures, Nanolayers, and Their Composites
Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties
Nanostructured Polystyrene Doped with Acetylsalicylic Acid and Its Antibacterial Properties