Tuning of Oxidation Potential of Ferrocene for Ratiometric Redox Labeling and Coding of Nucleotides and DNA
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
Praemium Academiae
Akademie Věd České Republiky
68081707
Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
31725178
PubMed Central
PMC7384099
DOI
10.1002/chem.201904700
Knihovny.cz E-resources
- Keywords
- DNA, electrochemistry, ferrocenes, nucleobases, redox labelling,
- MeSH
- Staining and Labeling methods MeSH
- Cytidine Triphosphate chemistry MeSH
- DNA Probes chemical synthesis chemistry MeSH
- DNA-Directed DNA Polymerase metabolism MeSH
- DNA chemistry metabolism MeSH
- Electrochemical Techniques MeSH
- Metallocenes chemistry MeSH
- Nucleotides chemistry MeSH
- Oxidation-Reduction MeSH
- Substrate Specificity MeSH
- Ferrous Compounds chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytidine Triphosphate MeSH
- DNA Probes MeSH
- DNA-Directed DNA Polymerase MeSH
- DNA MeSH
- ferrocene MeSH Browser
- Metallocenes MeSH
- Nucleotides MeSH
- Ferrous Compounds MeSH
Three sets of 7-deazaadenine and cytosine nucleosides and nucleoside triphosphates bearing either unsubstituted ferrocene, octamethylferrocene and ferrocenecarboxamide linked through an alkyne tether to position 7 or 5, respectively, were designed and synthesized. The modified dNFcX TPs were good substrates for KOD XL DNA polymerase in primer extension and were used for enzymatic synthesis of redox-labelled DNA probes. Square-wave voltammetry showed that the octamethylferrocene oxidation potential was shifted to lower values, whilst the ferrocenecarboxamide was shifted to higher potentials, as compared to ferrocene. Tailed PEX products containing different ratios of Fc-labelled A (dAFc ) and FcPa-labelled C (dCFcPa ) were synthesized and hybridized with capture oligonucleotides immobilized on gold electrodes to study the electrochemistry of the redox-labelled DNA. Clearly distinguishable, fully orthogonal and ratiometric peaks were observed for the dAFc and dCFcPa bases in DNA, demonstrating their potential for use in redox coding of nucleobases and for the direct electrochemical measurement of the relative ratio of nucleobases in an unknown sequence of DNA.
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 08010 Barcelona Spain
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
See more in PubMed
Paleček E., Bartošík M., Chem. Rev. 2012, 112, 3427–3481. PubMed
Hocek M., Fojta M., Chem. Soc. Rev. 2011, 40, 5802–5814. PubMed
Magriñá I., Toldrà A., Campàs M., Ortiz M., Simonova A., Katakis I., Hocek M., O'Sullivan C. K., Biosens. Bioelectron. 2019, 134, 76–82. PubMed
Debela A. M., Thorimbert S., Hasenknopf B., O'Sullivan C. K., Ortiz M., Chem. Commun. 2016, 52, 757–759. PubMed
Cahová H., Havran L., Brázdilová P., Pivonková H., Pohl R., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2008, 47, 2059–2062; PubMed
Angew. Chem. 2008, 120, 2089–2092.
Gorodetsky A. A., Green O., Yavin E., Barton J. K., Bioconjugate Chem. Bioconjug. Chem. 2007, 18, 1434–1441; PubMed
Balintová J., Pohl R., Horáková P., Vidláková P., Havran L., Fojta M., Hocek M., Chem. Eur. J. 2011, 17, 14063–14073. PubMed
Balintová J., Plucnara M., Vidláková P., Pohl R., Havran L., Fojta M., Hocek M., Chem. Eur. J. 2013, 19, 12720–12731. PubMed
Balintová J., Špaček J., Pohl R., Brázdová M., Havran L., Fojta M., Hocek M., Chem. Sci. 2015, 6, 575–587. PubMed PMC
Pheeney C. G., Barton J. K., Langmuir 2012, 28, 7063–7070. PubMed PMC
Simonova A., Balintová J., Pohl R., Havran L., Fojta M., Hocek M., ChemPlusChem 2014, 79, 1703–1712.
Simonova A., Havran L., Pohl R., Fojta M., Hocek M., Org. Biomol. Chem. 2017, 15, 6984–6996. PubMed
Van Staveren D. R., Metzler-Nolte N., Chem. Rev. 2004, 104, 5931–5985. PubMed
Di Giusto D. A., Wlassoff W. A., Geisebrecht S., Gooding J. J., King G. C., J. Am. Chem. Soc. 2004, 126, 4120–4121; PubMed
Di Giusto D. A., Wlassoff W. A., Geisebrecht S., Gooding J. J., King G. C., Angew. Chem. Int. Ed. 2004, 43, 2809–2812; PubMed
Angew. Chem. 2004, 116, 2869–2872;
Wlassoff W. A., King G. C., Nucleic Acids Res. 2002, 30, 58e; PubMed PMC
Yeung S. S. W., Lee T. M. H., Hsing I.-M., J. Am. Chem. Soc. 2006, 128, 13374–13375; PubMed
Patolsky F., Weizmann Y., Willner I., J. Am. Chem. Soc. 2002, 124, 770–772; PubMed
Yu C. J., Yowanto H., Wan Y. J., Meade T. J., Chong Y., Strong M., Donilon L. H., Kayyem J. F., Gozin M., Blackburn G. F., J. Am. Chem. Soc. 2000, 122, 6767–6768.
Brázdilová P., Vrábel M., Pohl R., Pivonková H., Havran L., Hocek M., Fojta M., Chem. Eur. J. 2007, 13, 9527–9533. PubMed
Shaughnessy K. H., Molecules 2015, 20, 9419–9454; PubMed PMC
Cho J. H., Prickett C. D., Shaughnessy K. H., Eur. J. Org. Chem. 2010, 3678–3683.
Jutzi P., Kleinebekel B., J. Organomet. Chem. 1997, 545–546, 573–576.
Beilstein A. E., Grinstaff M. W., Chem. Commun. 2000, 509–510.
Kuwahara M., Nagashima J., Hasegawa M., Tamura T., Kitagata R., Hanawa K., Hososhima S., Kasamatsu T., Ozaki H., Sawai H., Nucleic Acids Res. 2006, 34, 5383–5394; PubMed PMC
Kuwahara M., Takano Y., Kasahara Y., Nara H., Ozaki H., Sawai H., Sugiyama A., Obika S., Molecules 2010, 15, 8229–8240; PubMed PMC
Havranová-Vidláková P., Krömer M., Sýkorová V., Trefulka M., Fojta M., Havran L., Hocek M., ChemBioChem 2020, 10.1002/cbic.201900388. PubMed DOI
Špringer T., Šípová H., Vaisocherová H., Štěpánek J., Homola J., Nucleic Acids Res. 2010, 38, 7343–7351. PubMed PMC