Getting into sync: Data-driven analyses reveal patterns of neural coupling that distinguish among different social exchanges

. 2020 Mar ; 41 (4) : 1072-1083. [epub] 20191115

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31729105

In social interactions, each individual's brain drives an action that, in turn, elicits systematic neural responses in their partner that drive a reaction. Consequently, the brain responses of both interactants become temporally contingent upon one another through the actions they generate, and different interaction dynamics will be underpinned by distinct forms of between-brain coupling. In this study, we investigated this by "performing functional magnetic resonance imaging on two individuals simultaneously (dual-fMRI) while they competed or cooperated with one another in a turn-based or concurrent fashion." To assess whether distinct patterns of neural coupling were associated with these different interactions, we combined two data-driven, model-free analytical techniques: group-independent component analysis and inter-subject correlation. This revealed four distinct patterns of brain responses that were temporally aligned between interactants: one emerged during co-operative exchanges and encompassed brain regions involved in social cognitive processing, such as the temporo-parietal cortex. The other three were associated with competitive exchanges and comprised brain systems implicated in visuo-motor processing and social decision-making, including the cerebellum and anterior cingulate cortex. Interestingly, neural coupling was significantly stronger in concurrent relative to turn-based exchanges. These results demonstrate the utility of data-driven approaches applied to "dual-fMRI" data in elucidating the interpersonal neural processes that give rise to the two-in-one dynamic characterizing social interaction.

Zobrazit více v PubMed

Abe, M. O. , Koike, T. , Okazaki, S. , Sugawara, S. K. , Takahashi, K. , Watanabe, K. , & Sadato, N. (2019). Neural correlates of online cooperation during joint force production. NeuroImage, 191, 150–161. 10.1016/j.neuroimage.2019.02.003 PubMed DOI

Ahn, S. , Cho, H. , Kwon, M. , Kim, K. , Kwon, H. , Kim, B. S. , … Jun, S. C. (2017). Interbrain phase synchronization during turn‐taking verbal interaction‐a hyperscanning study using simultaneous EEG/MEG. Human Brain Mapping, 39(1), 171–188. 10.1002/hbm.23834 PubMed DOI PMC

Babiloni, F. , & Astolfi, L. (2014). Social neuroscience and hyperscanning techniques: past, present and future. Neuroscience & Biobehavioral Reviews, 44, 76–93. PubMed PMC

Bardi, L. , Six, P. , & Brass, M. (2017). Repetitive TMS of the temporo‐parietal junction disrupts participant's expectations in a spontaneous theory of mind task. Social Cognitive and Affective Neuroscience, 12(11), 1775–1782. 10.1093/scan/nsx109 PubMed DOI PMC

Beckmann, C. F. , & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging , 23, 137–152. PubMed

Bhaganagarapu, K. , Jackson, G. D. , & Abbott, D. F. (2013). An automated method for identifying artifact in independent component analysis of resting‐state fMRI. Frontiers in Human Neuroscience , 7(7), 1–17. PubMed PMC

Bilek, E. , Ruf, M. , Schäfer, A. , Akdeniz, C. , Calhoun, V. D. , Schmahl, C. , … Meyer‐Lindenberg, A. (2015). Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Proceedings of the National Academy of Sciences, 112(16), 5207–5212. 10.1073/pnas.1421831112 PubMed DOI PMC

Bilek, E. , Stößel, G. , Schäfer, A. , Clement, L. , Ruf, M. , Robnik, L. , … Meyer‐Lindenberg, A. (2017). State‐dependent cross‐brain information flow in borderline personality disorder. JAMA psychiatry, 74(9), 949–957. PubMed PMC

Calhoun, V. D. , Adali, T. , Pearlson, G. D. , & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human brain mapping, 14(3), 140–151. PubMed PMC

Calhoun V. D., Kiehl, K. A. & Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. PubMed PMC

Carlson, S. M. , Koenig, M. A. , & Harms, M. B. (2013). Theory of mind. Wiley Interdisciplinary Reviews. Cognitive Science, 4(4), 391–402. 10.1002/wcs.1232 PubMed DOI

Cavanna, A. E. , & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583. PubMed

Cheng, X. , Li, X. , & Hu, Y. (2015). Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS‐based hyperscanning study. Human Brain Mapping, 36(6), 2039–2048. 10.1002/hbm.22754 PubMed DOI PMC

Culham, J. C. , Cavina‐Pratesi, C. , & Singhal, A. (2006). The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia, 44(13), 2668–2684. 10.1016/j.neuropsychologia.2005.11.003 PubMed DOI

Decety, J. , Jackson, P. L. , Sommerville, J. A. , Chaminade, T. , & Meltzoff, A. N. (2004). Theneural bases of cooperation and competition: an fMRI investigation. NeuroImage, 23, 744–751. PubMed PMC

Dumas, G. , Martinerie, J. , Soussignan, R. , & Nadel, J. (2012). Does the brain know who is at the origin of what in an imitative interaction? Frontiers in Human Neuroscience, 6, 1–11. 10.3389/fnhum.2012.00128 PubMed DOI PMC

Dumas, G. , Nadel, J. , Soussignan, R. , Martinerie, J. , & Garnero, L. (2010). Inter‐brain synchronization during social interaction. PLoS One, 5(8), e12166 10.1371/journal.pone.0012166 PubMed DOI PMC

Dumontheil, I. , Küster, O. , Apperly, I. A. , & Blakemore, S. J. (2010). Taking perspective into account in a communicative task. Neuroimage, 52(4), 1574–1583. PubMed

Eddy, C. M. (2016). The junction between self and other? Temporo‐parietal dysfunction in neuropsychiatry. Neuropsychologia, 89, 465–477. 10.1016/j.neuropsychologia.2016.07.030 PubMed DOI

Frith, C. D. , & Frith, U. (2006). The neural basis of Mentalizing. Neuron, 50(4), 531–534. 10.1016/j.neuron.2006.05.001 PubMed DOI

Gallivan, J. P. , & Culham, J. C. (2015). Neural coding within human brain areas involved in actions. Current Opinion in Neurobiology, 33, 141–149. 10.1016/j.conb.2015.03.012 PubMed DOI

Ghaem, O. , Mellet, E. , Crivello, F. , Tzourio, N. , Mazoyer, B. , Berthoz, A. , & Denis, M. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8(3), 739–744. PubMed

Grahn, J. A. , Parkinson, J. A. , & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86(3), 141–155. 10.1016/j.pneurobio.2008.09.004 PubMed DOI

Hampton, A. N. , Bossaerts, P. , & O'Doherty, J. P. (2008). Neural correlates of mentalizing‐related computations during strategic interactions in humans. Proceedings of the National Academy of Sciences, 105(18), 6741–6746. PubMed PMC

Hanakawa, T. , Honda, M. , Okada, T. , Fukuyama, H. , & Shibasaki, H. (2003). Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage, 19(2), 296–307. PubMed

Hari, R. , Himberg, T. , Nummenmaa, L. , Hämäläinen, M. , & Parkkonen, L. (2013). Synchrony of brains and bodies during implicit interpersonal interaction. Trends in Cognitive Sciences, 17(3), 105–106. 10.1016/j.tics.2013.01.003 PubMed DOI

Hasson, U. , & Frith, C. D. (2016). Mirroring and beyond: Coupled dynamics as a generalized framework for modelling social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150366 10.1098/rstb.2015.0366 PubMed DOI PMC

Hasson, U. , & Honey, C. J. (2012). Future trends in neuroimaging: Neural processes as expressed within real‐life contexts. NeuroImage, 62(2), 1272–1278. 10.1016/j.neuroimage.2012.02.004 PubMed DOI PMC

Hasson, U. , Nir, Y. , Levy, I. , Fuhrmann, G. , & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science (New York, NY), 303(2004), 1634–1640. 10.1126/science.1089506 PubMed DOI

Himberg, J. , Hyvärinen, A. , & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22(3), 1214–1222. 10.1016/j.neuroimage.2004.03.027 PubMed DOI

Hirsch, J. , Zhang, X. , Noah, J. A. , & Ono, Y. (2017). Frontal temporal and parietal systems synchronize within and across brains during live eye‐to‐eye contact. NeuroImage, 157, 314–330. 10.1016/j.neuroimage.2017.06.018 PubMed DOI PMC

Holmes, C. J. , Hoge, R. , Collins, L. , Woods, R. , Toga, A. W. , & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333. 10.1097/00004728-199803000-00032 PubMed DOI

Jahng, J. , Kralik, J. D. , Hwang, D. U. , & Jeong, J. (2017). Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the Prisoner's dilemma game. NeuroImage, 157, 263–274. 10.1016/j.neuroimage.2017.06.024 PubMed DOI

Jara‐Ettinger, J. , Baker, C. , & Tenenbaum, J. (2012). Learning what is where from social observations. Proceedings of the Annual Meeting of the Cognitive Science Society, 34(34), 515–520.

Jenkinson, M. , Bannister, P. R. , Brady, J. M. & Smith, S. M. (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. PubMed

Jenkinson, M. , Beckmann, C. F. , Behrens, T. E. J. , Woolrich, M. W. , & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. PubMed

Kasai, K. , Fukuda, M. , Yahata, N. , Morita, K. , & Fujii, N. (2015). The future of real‐world neuroscience: Imaging techniques to assess active brains in social environments. Neuroscience Research, 90, 65–71. 10.1016/j.neures.2014.11.007 PubMed DOI

Kestemont, J. , Ma, N. , Baetens, K. , Clément, N. , Van Overwalle, F. , & Vandekerckhove, M. (2015). Neural correlates of attributing causes to the self, another person and the situation. Social Cognitive and Affective Neuroscience, 10(1), 114–121. 10.1093/scan/nsu030 PubMed DOI PMC

Kestemont, J. , Vandekerckhove, M. , Ma, N. , Van Hoeck, N. , & Van Overwalle, F. (2013). Situation and person attributions under spontaneous and intentional instructions: An fMRI study. Social Cognitive and Affective Neuroscience, 8(5), 481–493. 10.1093/scan/nss022 PubMed DOI PMC

Kinreich, S. , Djalovski, A. , Kraus, L. , Louzoun, Y. , & Feldman, R. (2017). Brain‐to‐brain synchrony during naturalistic social interactions. Scientific Reports, 7(1), 17060 10.1038/s41598-017-17339-5 PubMed DOI PMC

Koike, T. , Tanabe, H. C. , & Sadato, N. (2015). Hyperscanning neuroimaging technique to reveal the “two‐in‐one” system in social interactions. Neuroscience Research, 90, 25–32. 10.1016/j.neures.2014.11.006 PubMed DOI

Konvalinka, I. , & Roepstorff, A. (2012). The two‐brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience, 6, 1–10. 10.3389/fnhum.2012.00215 PubMed DOI PMC

Lamm, C. , Bukowski, H. , & Silani, G. (2016). From shared to distinct self‐other representations in empathy: Evidence from neurotypical function and socio‐cognitive disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150083 10.1098/rstb.2015.0083 PubMed DOI PMC

Langlois, D. , Chartier, S. , & Gosselin, D. (2010). An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 6(1), 31–38. 10.20982/tqmp.06.1.p031 DOI

Leggio, M. , & Molinari, M. (2015). Cerebellar sequencing: A trick for predicting the future. The Cerebellum, 14(1), 35–38. 10.1007/s12311-014-0616-x PubMed DOI

Lindquist, M. A. , Geuter, S. , Wager, T. D. , & Caffo, B. S. (2019). Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Human brain mapping, 40(8), 2358–2376. PubMed PMC

Liu, T. , & Pelowski, M. (2014). Clarifying the interaction types in two‐person neuroscience research. Frontiers in Human Neuroscience, 8, 276 10.3389/fnhum.2014.00276 PubMed DOI PMC

Mazzarella, E. , Ramsey, R. , Conson, M. , & Hamilton, A. (2013). Brain systems for visual perspective taking and action perception. Social neuroscience, 8(3), 248–267. PubMed

Nastase, S. A. , Gazzola, V. , & Keysers, C. (2019). Measuring shared responses across subjects using intersubject correlation. Social Cognitive and Affective Neuroscience, 14(6), 667–685. 10.1101/600114 PubMed DOI PMC

Nixon, P. D. (2003). The role of the cerebellum in preparing responses to predictable sensory events. Cerebellum, 2(2), 114–122. 10.1080/14734220310011353 PubMed DOI

Pérez, A. , Carreiras, M. , & Duñabeitia, J. A. (2017). Brain‐to‐brain entrainment: EEG interbrain synchronization while speaking and listening. Scientific Reports, 7(1), 1–12. 10.1038/s41598-017-04464-4 PubMed DOI PMC

Pérez, A. , Dumas, G. , Karadag, M. , & Duñabeitia, J. A. (2019). Differential brain‐to‐brain entrainment while speaking and listening in native and foreign languages. Cortex, 111, 303–315. PubMed

Redcay, E. , & Schilbach, L. (2019). Using second‐person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience., 20, 495–505. 10.1038/s41583-019-0179-4 PubMed DOI PMC

Rojiani, R. , Zhang, X. , Noah, A. , & Hirsch, J. (2018). Communication of emotion via drumming: Dual‐brain imaging with functional near‐infrared spectroscopy. Social Cognitive and Affective Neuroscience, 13(10), 1047–1057. 10.1093/scan/nsy076 PubMed DOI PMC

Sammut, C. , & Webb, G. I. (2016). In Sammut C. & Webb G. I. (Eds.), Encyclopedia of machine learning and data mining. Boston, MA: Springer US; 10.1007/978-1-4899-7502-7 DOI

Sänger, J. , Müller, V. , & Lindenberger, U. (2012). Intra‐ and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 6, 312 10.3389/fnhum.2012.00312 PubMed DOI PMC

Schilbach, L. , Bzdok, D. , Timmermans, B. , Fox, P. T. , Laird, A. R. , Vogeley, K. , & Eickhoff, S. B. (2012). Introspective minds: Using ALE meta‐analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PLoS One, 7(2), e30920 10.1371/journal.pone.0030920 PubMed DOI PMC

Schilbach, L. , Timmermans, B. , Reddy, V. , Costall, A. , Bente, G. , Schlicht, T. , & Vogeley, K. (2013). Toward a second‐person neuroscience. Behavioral and Brain Sciences, 36(04), 393–414. 10.1017/S0140525X12000660 PubMed DOI

Scholkmann, F. , Holper, L. , Wolf, U. , & Wolf, M. (2013). A new methodical approach in neuroscience: assessing inter‐personal brain coupling using functional near‐infrared imaging (fNIRI) hyperscanning. Frontiers in human neuroscience, 7, 813. PubMed PMC

Sebanz, N. , Bekkering, H. , & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10, 70–76. 10.1016/j.tics.2005.12.009 PubMed DOI

Shaw, D. J. , Czekóová, K. , Staněk, R. , Mareček, R. , Urbánek, T. , Špalek, J. , … Brázdil, M. (2018). A dual‐fMRI investigation of the iterated ultimatum game reveals that reciprocal behaviour is associated with neural alignment. Scientific Reports, 8(1), 10896 10.1038/s41598-018-29233-9 PubMed DOI PMC

Špiláková, B. , Shaw, D. J. , Czekóová, K. , & Brázdil, M. (2019). Dissecting social interaction: Dual‐fMRI reveals patterns of interpersonal brain‐behavior relationships that dissociate among dimensions of social exchange. Social Cognitive and Affective Neuroscience, 14(2), 225–235. 10.1093/scan/nsz004 PubMed DOI PMC

Tang, H. , Mai, X. , Wang, S. , Zhu, C. , Krueger, F. , & Liu, C. (2016). Interpersonal brain synchronization in the right temporo‐parietal junction during face‐to‐face economic exchange. Social Cognitive and Affective Neuroscience, 11(1), 23–32. 10.1093/scan/nsv092 PubMed DOI PMC

Toppi, J. , Borghini, G. , Petti, M. , He, E. J. , De Giusti, V. , … Babiloni, F. (2016). Investigating cooperative behavior in ecological settings: An EEG Hyperscanning study. PLOS One, 11(4), e0154236 10.1371/journal.pone.0154236 PubMed DOI PMC

Uddin, L. Q. , Molnar‐Szakacs, I. , Zaidel, E. , & Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self‐other discrimination. Social Cognitive and Affective Neuroscience, 1(1), 65–71. 10.1093/scan/nsl003 PubMed DOI PMC

van den Heuvel, M. P. , & Sporns, O. (2011). Rich‐Club Organization of the Human Connectome. Journal of Neuroscience, 31(44), 15775–15786. 10.1523/JNEUROSCI.3539-11.2011 PubMed DOI PMC

Wan, X. , Nakatani, H. , Ueno, K. , Asamizuya, T. , Cheng, K. , & Tanaka, K. (2011). The neural basis of intuitive best next‐move generation in board game experts. Science, 331(6015), 341–346. 10.1126/science.1194732 PubMed DOI

Wilson, S. M. , Molnar‐Szakacs, I. , & Iacoboni, M. (2008). Beyond superior temporal cortex: Intersubject correlations in narrative speech comprehension. Cerebral Cortex, 18, 230–242. 10.1093/cercor/bhm049 PubMed DOI

Wolf, I. , Dziobek, I. , & Heekeren, H. R. (2010). Neural correlates of social cognition in naturalistic settings: A model‐free analysis approach. NeuroImage, 49(1), 894–904. 10.1016/j.neuroimage.2009.08.060 PubMed DOI

Zaki, J. , Bolger, N. , & Ochsner, K. (2008). The Interpersonal Nature of Empathic Accuracy. Psychological Science, 19(4), 399–404. PubMed

Zhang, M. , Liu, T. , Pelowski, M. , Jia, H. , & Yu, D. (2017). Social risky decision‐making reveals gender differences in the TPJ: A hyperscanning study using functional near‐infrared spectroscopy. Brain and Cognition, 119, 54–63. 10.1016/j.bandc.2017.08.008 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...