A neuroscientific evaluation of driver rehabilitation: Functional neuroimaging demonstrates the effectiveness of empathy induction in altering brain responses during social information processing
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32348338
PubMed Central
PMC7190157
DOI
10.1371/journal.pone.0232222
PII: PONE-D-20-04979
Knihovny.cz E-zdroje
- MeSH
- bezpečnost MeSH
- dopravní nehody prevence a kontrola psychologie MeSH
- dospělí MeSH
- empatie * MeSH
- funkční zobrazování neurálních procesů MeSH
- interpersonální vztahy MeSH
- kompetitivní chování MeSH
- kooperační chování MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- psychologické modely MeSH
- řízení motorových vozidel psychologie MeSH
- sociální chování MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
An alarming number of traffic-related deaths occur each year on European roads alone. Figures reveal that the vast majority of road-traffic accidents are caused by drivers themselves, and so further improvements in road safety require developments in driver training and rehabilitation. This study evaluated a novel approach to driver rehabilitation-specifically, empathy induction as a means of changing attitudes towards risky driving. To assess the effectiveness of this method, the present study employed functional magnetic resonance imaging (fMRI) to compare brain function before and after a short program of empathy induction in 27 drivers whose licenses had been revoked after serious traffic offences (rehabilitated drivers [RDs]). In an extension of our previous research, we first assessed whether neural responses to empathy-eliciting social stimuli changed in these RDs. In order to isolate the neurophysiological effects of empathy induction from any other potential influences, we compared these RDs to a sample of 27 age-, handedness- and driving experience-matched control drivers (CDs) who had no exposure to the program. We then performed dual-fMRI "hyperscanning" to evaluate whether empathy induction changed brain responses during real-world social interactions among drivers; namely, during co-operative and/or competitive exchanges. Our data reveal that RDs exhibited weaker brain responses to socio-emotional stimuli compared with CDs prior to the program, but this difference was reversed after empathy induction. Moreover, we observed differences between pre- and post-program assessments in patterns of brain responses in RDs elicited during competitive social exchanges, which we interpret to reflect a change in their proclivity to react to the perceived wrong-doing of other road users. Together, these findings suggest that empathy induction is an effective form of driver rehabilitation, and the utility of neuroscientific techniques for evaluating and improving rehabilitation programs.
Zobrazit více v PubMed
Hattaka M, Keskinen E, Gregersen N, Glad A, Hemetkoski K. Results of EU-Project GADGET. WP3 ed Brussels: European Commission; 1999.
Bartl G, Assailly J, Chatenet F, Hatakka M, Keskinen E, Willmes-Lenz G. EU-Project „ Andrea “Analysis of Driver Rehabilitation Programmes. 1st Editio Wien: Kuratorium für Verkehrssicherheit; 2002.
Kallberg V-P. SUPREME—European Best Practice in Road Safety. 2008.
Follmann W, Heinrich E, Corvo D, Mühlensiep M, Zimmermann C, Klipp S, et al. Psychologische Rehabilitations-und Therapiemaßahmen für verkehrsauffällige Kraftfahrer. Teil A: Dokumentation von Maßnahmen außerhalb des gesetzlich geregelten Bereichs und Optimierungsansätze. Teil B: Potenzial bestehender Beratungskonzepte und Ansätze z. 2008.
Masten S V., Peck RC. Problem driver remediation: A meta-analysis of the driver improvement literature. J Safety Res. 2004;35(4):403–25. 10.1016/j.jsr.2004.06.002 PubMed DOI
Elvik R, Høye A, Vaa T, Sørensen M. The handbook of road safety measures Emerald Group Publishing Limited. Bingley, UK: Emerald Group Publishing Limited; 2009.
Phillips RO, Ulleberg P, Vaa T. Meta-analysis of the effect of road safety campaigns on accidents. Accid Anal Prev [Internet]. 2011;43(3):1204–18. Available from: 10.1016/j.aap.2011.01.002 PubMed DOI
Zelinková J, Shaw DJ, Mareček R, Mikl M, Urbánek T, Havlíčková D, et al. An evaluation of traffic-awareness campaign videos: empathy induction is associated with brain function within superior temporal sulcus. Behav Brain Funct. 2014. January;10(1):27. PubMed PMC
Zelinková J, Shaw DJ, Mareček R, Mikl M, Urbánek T, Peterková L, et al. Superior temporal sulcus and social cognition in dangerous drivers. Neuroimage. 2013;83:1024–30. 10.1016/j.neuroimage.2013.07.063 PubMed DOI
Schilbach L, Timmermans B, Reddy V, Costall A, Bente G, Schlicht T, et al. A second-person neuroscience in interaction. Behav Brain Sci. 2013;36(4):441–62. 10.1017/s0140525x12002452 PubMed DOI
Redcay E, Schilbach L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nat Rev Neurosci [Internet]. 2019;20(8):495–505. Available from: 10.1038/s41583-019-0179-4 PubMed DOI PMC
Špiláková B, Shaw DJ, Czekóová K, Brázdil M. Dissecting social interaction: Dual-fMRI reveals patterns of interpersonal brain-behavior relationships that dissociate among dimensions of social exchange. Soc Cogn Affect Neurosci. 2019;14(2):225–35. 10.1093/scan/nsz004 PubMed DOI PMC
Špiláková B, Shaw DJ, Czekóová K, Mareček R, Brázdil M. Getting into sync: Data-driven analyses reveal patterns of neural coupling that distinguish among different social exchanges. Hum Brain Mapp. 2020;41(4):1072–1083. PubMed PMC
Shaw DJ, Czekóová K, Pennington CR, Qureshi AW, Špiláková B, Salazar M, et al. You ≠ Me: Individual differences in the structure of social cognition. Psychol Res [Internet]. 2018; Available from: 10.1007/s00426-018-1107-3 PubMed DOI PMC
Babiloni F, Astolfi L. Social neuroscience and hyperscanning techniques: Past, present and future. Neurosci Biobehav Rev [Internet]. 2014;44:76–93. Available from: 10.1016/j.neubiorev.2012.07.006 PubMed DOI PMC
Decety J, Jackson PL, Sommerville J a., Chaminade T, Meltzoff AN. The neural bases of cooperation and competition: an fMRI investigation. Neuroimage. 2004. October;23(2):744–51. 10.1016/j.neuroimage.2004.05.025 PubMed DOI PMC
Reason J, Manstead A, Stradling S, Baxter J, Campbell K. Errors and violations on the roads: a real distinction? Ergonomics. 1990;33(10–11):1315–32. 10.1080/00140139008925335 PubMed DOI
Sucha M, Sramkova L, Risser R. The Manchester driver behaviour questionnaire: self-reports of aberrant behaviour among Czech drivers. Eur Transp Res Rev. 2014;6(4):493–502.
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90. 10.1016/j.neuroimage.2011.09.015 PubMed DOI
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–55. 10.1002/hbm.10062 PubMed DOI PMC
Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage. 2001;14(6):1370–86. 10.1006/nimg.2001.0931 PubMed DOI
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41. 10.1016/s1053-8119(02)91132-8 PubMed DOI
Beckmann CF, Smith SM. Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Trans Med Imaging. 2004;23(2):137–52. 10.1109/TMI.2003.822821 PubMed DOI
Bhaganagarapu K, Jackson GD, Abbott DF. An automated method for identifying artifact in independent component analysis of resting-state fMRI. Front Hum Neurosci. 2013;7(JUL):1–18. PubMed PMC
Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci. 2016. July;113(28):7900–5. 10.1073/pnas.1602413113 PubMed DOI PMC
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage [Internet]. 2014;92:381–97. Available from: 10.1016/j.neuroimage.2014.01.060 PubMed DOI PMC
Smith SM, Nichols TE. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage [Internet]. 2009;44(1):83–98. Available from: 10.1016/j.neuroimage.2008.03.061 PubMed DOI
Sammut C, Webb GI. Encyclopedia of machine learning and data mining. Sammut C, Webb G., editors. Boston, MA: Springer US; 2016.
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp. 2001;13(1):43–53. 10.1002/hbm.1024 PubMed DOI PMC
Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, et al. Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct. 2012;217(4):783–96. 10.1007/s00429-012-0380-y PubMed DOI PMC
Schurz M, Aichhorn M, Martin A, Perner J. Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies. Front Hum Neurosci. 2013;7(November):1–14. PubMed PMC
Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage [Internet]. 2011;54(3):2492–502. Available from: 10.1016/j.neuroimage.2010.10.014 PubMed DOI
Rameson LT, Morelli SA, Lieberman MD. The neural correlates of empathy: Experience, automaticity, and prosocial behavior. J Cogn Neurosci. 2012;24(1):235–45. 10.1162/jocn_a_00130 PubMed DOI
Klimecki OM, Leiberg S, Ricard M, Singer T. Differential pattern of functional brain plasticity after compassion and empathy training. Soc Cogn Affect Neurosci. 2014;9(6):873–9. 10.1093/scan/nst060 PubMed DOI PMC
Klimecki OM, Leiberg S, Lamm C, Singer T. Functional neural plasticity and associated changes in positive affect after compassion training. Cereb Cortex. 2012;23(7):1552–61. 10.1093/cercor/bhs142 PubMed DOI
Ashar YK, Andrews-Hanna JR, Yarkoni T, Sills J, Halifax J, Dimidjian S, et al. Effects of compassion meditation on a psychological model of charitable donation. Emotion. 2016;16(5):691–705. 10.1037/emo0000119 PubMed DOI
Teding van Berkhout E, Malouff JM. The efficacy of empathy training: A meta-analysis of randomized controlled trials. J Couns Psychol. 2016;63(1):32–41. 10.1037/cou0000093 PubMed DOI
Adams SA, Matthews CE, Ebbeling CB, Moore CG, Cunningham JE, Fulton J, et al. The effect of social desirability and social approval on self-reports of physical activity. Am J Epidemiol. 2005;161(4):389–98. 10.1093/aje/kwi054 PubMed DOI PMC
Eisenberg N, Eggum ND, Di Giunta L. Empathy-Related Responding: Associations with Prosocial Behavior, Aggression, and Intergroup Relations. Soc Issues Policy Rev. 2010;4(1):143–80. 10.1111/j.1751-2409.2010.01020.x PubMed DOI PMC
Hein G, Lamm C, Brodbeck C, Singer T. Skin conductance response to the pain of others predicts later costly helping. PLoS One. 2011;6(8):1–6. PubMed PMC
Chai J, Qu W, Sun X, Zhang K, Ge Y. Negativity bias in dangerous drivers. PLoS One [Internet]. 2016;11(1):1–15. Available from: 10.1371/journal.pone.0147083 PubMed DOI PMC
Bilek E, Ruf M, Schäfer A, Akdeniz C, Calhoun VD, Schmahl C, et al. Information flow between interacting human brains: Identification, validation, and relationship to social expertise. Proc Natl Acad Sci U S A. 2015;112(16):5207–12. 10.1073/pnas.1421831112 PubMed DOI PMC
Shaw DJ, Czekóová K, Staněk R, Mareček R, Urbánek T, Špalek J, et al. A dual-fMRI investigation of the iterated Ultimatum game reveals that reciprocal behaviour is associated with neural alignment. Sci Rep. 2018;8(1):1–13. 10.1038/s41598-017-17765-5 PubMed DOI PMC
Burnett S, Blakemore S-J. Functional connectivity during a social emotion task in adolescents and in adults. Eur J Neurosci. 2009. March;29(6):1294–301. 10.1111/j.1460-9568.2009.06674.x PubMed DOI PMC
Schmälzle R, Brook O’Donnell M, Garcia JO, Cascio CN, Bayer J, Bassett DS, et al. Brain connectivity dynamics during social interaction reflect social network structure. Proc Natl Acad Sci. 2017;114(20):5153–8. 10.1073/pnas.1616130114 PubMed DOI PMC
Choi MH, Kim HS, Yoon HJ, Lee JC, Baek JH, Choi JS, et al. Increase in brain activation due to subtasks during driving: FMRI study using new MR-compatible driving simulator. J Physiol Anthropol [Internet]. 2017;36(1):1–12. Available from: 10.1186/s40101-017-0128-8 PubMed DOI PMC
Mader M, Bresges A, Topal R, Busse A, Forsting M, Gizewski ER. Simulated car driving in fMRI-Cerebral activation patterns driving an unfamiliar and a familiar route. Neurosci Lett. 2009;464(3):222–7. 10.1016/j.neulet.2009.08.056 PubMed DOI
Nilsen AS, Blix I, Leknes S, Ekeberg Ø, Skogstad L, Endestad T, et al. Brain activity in response to trauma-specific, negative, and neutral stimuli. A fMRI study of recent road traffic accident survivors. Front Psychol. 2016;7(AUG):1–12. PubMed PMC
Chen P, Chen F, Zhang L, Ma X, Pan X. Examining the influence of decorated sidewaall in road tunnels using fMRI technology. Tunn Undergr Sp Technol [Internet]. 2020;99(January 2019):103362 Available from: 10.1016/j.tust.2020.103362 DOI