The role of the striatum in visuomotor integration during handwriting: an fMRI study
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31901984
DOI
10.1007/s00702-019-02131-8
PII: 10.1007/s00702-019-02131-8
Knihovny.cz E-zdroje
- Klíčová slova
- Basal ganglia, Functional connectivity, Handwriting, Striatum, Visuomotor integration, fMRI,
- MeSH
- corpus striatum diagnostické zobrazování fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování fyziologie MeSH
- nervová síť diagnostické zobrazování fyziologie MeSH
- pohybová aktivita fyziologie MeSH
- psaní rukou * MeSH
- psychomotorický výkon fyziologie MeSH
- rozpoznávání obrazu fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study investigates the role of the dorsal/sensorimotor striatum in visuomotor integration (i.e., the transformation of internal visual information about letter shapes into motor output) during handwriting. Twenty healthy participants underwent fMRI scanning with tasks consisting of self-paced handwriting of alphabetically ordered single letters and simple dots, with both tasks performed without visual feedback. Functional connectivity (FC) from these two tasks was compared to demonstrate the difference between coordinated activity arising during handwriting and the activity during a simpler motor condition. Our study focused upon the writing-specific cortico-striatal network of preselected regions of interest consisting of the visual word form area (VWFA), anterior intraparietal sulcus/superior parietal lobule, striatum, premotor cortex/Exner's area, and primary and supplementary motor regions. We observed systematically increased task-induced cortico-striatal and cortico-cortical FC. This increased synchronization of neural activity between the VWFA, i.e., the visual cortical area containing information about letter shapes, and the frontoparietal motor regions is mediated by the striatum. These findings suggest the involvement of the striatum in integrating stored letter-shape information with motor planning and execution during handwriting.
Zobrazit více v PubMed
Barton M, Marecek R, Krajcovicova L, Slavicek T, Kasparek T, Zemankova P et al (2019) Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies—quantifying noise removal and neural signal preservation. Hum Brain Mapp 40(4):1114–1138. https://doi.org/10.1002/hbm.24433 PubMed DOI
Beeson PM, Rapcsak SZ, Plante E, Chargualaf J, Chung A, Johnson SC, Trouard TP (2003) The neural substrates of writing: a functional magnetic resonance imaging study. Aphasiology 17(6–7):647–665. https://doi.org/10.1080/02687030344000067 DOI
Bell PT, Shine JM (2016) Subcortical contributions to large-scale network communication. Neurosci Biobehav Rev 71:313–322. https://doi.org/10.1016/j.neubiorev.2016.08.036 PubMed DOI
Booth JR, Wood L, Lu D, Houk JC, Bitan T (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133(1):136–144. https://doi.org/10.1016/j.brainres.2006.11.074 PubMed DOI
Chakravarthy VS, Joseph D, Bapi RS (2010) What do the basal ganglia do? A modeling perspective. Biol Cybern 103(3):237–253 DOI
Cohen L, Lehericy S, Chochon F, Lemer C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex functional properties of the Visual Word Form Area. Brain 125:1054–1069. https://doi.org/10.1093/brain/awf094 PubMed DOI
Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1):238–251. https://doi.org/10.1016/j.neuron.2014.05.014 PubMed DOI PMC
Ellenblum G, Purcell JJ, Song XW, Rapp B (2019) High-level integrative networks: a resting-state fMRI investigation of reading and spelling. J Cogn Neurosci 31(7):961–977. https://doi.org/10.1162/jocn_a_01405 PubMed DOI
Helie S, Chakravarthy S, Moustafa AA (2013) Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci. https://doi.org/10.3389/fncom.2013.00174 PubMed DOI PMC
James KH, Gauthier I (2006) Letter processing automatically recruits a sensory-motor brain network. Neuropsychologia 44(14):2937–2949. https://doi.org/10.1016/j.neuropsychologia.2006.06.026 PubMed DOI
Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12(5):535–540. https://doi.org/10.1038/nn.2303 PubMed DOI PMC
Planton S, Jucla M, Roux FE, Demonet JF (2013) The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex 49(10):2772–2787. https://doi.org/10.1016/j.cortex.2013.05.011 PubMed DOI
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048 PubMed DOI
Purcell JJ, Turkeltaub PE, Eden GF, Rapp B (2011) Examining the central and peripheral processes of written word production through meta-analysis. Front Psychol. https://doi.org/10.3389/fpsyg.2011.00239 PubMed DOI PMC
Rapcsak SZ, Beeson PM (2002) Neuroanatomical correlates of spelling and writing. In: Hillis AE (ed) Handbook of adult language disorders: integrating cognitive neuropsychology, neurology, and rehabilitation. Psychology Press, Philadelphia, pp 71–99
Rektor I, Bares M, Brazdil M, Kanovsky P, Rektorova I, Sochuorkova D et al (2005) Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov Disord 20(5):562–568. https://doi.org/10.1002/mds.20368 PubMed DOI
Rektor I, Rektorova I, Mikl M, Brazdil M, Krupa P (2006a) An event-related fMRI study of self-paced alphabetically ordered writing of single letters. Exp Brain Res 173(1):79–85. https://doi.org/10.1007/s00221-006-0369-y PubMed DOI
Rektor I, Rektorova I, Mikl M, Brazdil M, Krupa P (2006b) An event-related fMRI study of self-paced writing of simple dots. J Psychophysiol 20(2):61–67. https://doi.org/10.1027/0269-8803.20.2.61 DOI
Roth JK, Johnson MK, Tokoglu F, Murphy I, Constable RT (2014) Modulating intrinsic connectivity: adjacent subregions within supplementary motor cortex, dorsolateral prefrontal cortex, and parietal cortex connect to separate functional networks during task and also connect during rest. PLoS ONE. https://doi.org/10.1371/journal.pone.0090672 PubMed DOI PMC
Rushworth MFS, Krams M, Passingham RE (2001) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13(5):698–710. https://doi.org/10.1162/089892901750363244 PubMed DOI
Seger CA (2013) The visual corticostriatal loop through the tail of the caudate: circuitry and function. Front Syst Neurosci 7:104 DOI
Seghier ML, Price CJ (2010) Reading aloud boosts connectivity through the Putamen. Cereb Cortex 20(3):570–582. https://doi.org/10.1093/cercor/bhp123 PubMed DOI
Shipp S (2017) The functional logic of corticostriatal connections. Brain Struct Funct 222(2):669–706. https://doi.org/10.1007/s00429-016-1250-9 PubMed DOI
Tomasi D, Wang RL, Wang GJ, Volkow ND (2014) Functional connectivity and brain activation: a synergistic approach. Cereb Cortex 24(10):2619–2629. https://doi.org/10.1093/cercor/bht119 PubMed DOI
Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P et al (2014) Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex 24(5):1165–1177. https://doi.org/10.1093/cercor/bhs397 PubMed DOI
Vinci-Booher SA, James KH (2016) Neural substrates of sensorimotor processes: letter writing and letter perception. J Neurophysiol 115(1):1–4. https://doi.org/10.1152/jn.01042.2014 PubMed DOI
Zuo NM, Yang ZY, Liu Y, Li J, Jiang TZ (2018) Both activated and less-activated regions identified by functional MRI reconfigure to support task executions. Brain Behav. https://doi.org/10.1002/brb3.893 PubMed DOI PMC