Reproducible Colonization of Germ-Free Mice With the Oligo-Mouse-Microbiota in Different Animal Facilities
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
31998276
PubMed Central
PMC6965490
DOI
10.3389/fmicb.2019.02999
Knihovny.cz E-resources
- Keywords
- 3R, Oligo-MM12, defined bacterial consortia, gnotobiology, isobiotic mice, minimal microbiome, sDMDMm2, syncom,
- Publication type
- Journal Article MeSH
The Oligo-Mouse-Microbiota (OMM12) is a recently developed synthetic bacterial community for functional microbiome research in mouse models (Brugiroux et al., 2016). To date, the OMM12 model has been established in several germ-free mouse facilities world-wide and is employed to address a growing variety of research questions related to infection biology, mucosal immunology, microbial ecology and host-microbiome metabolic cross-talk. The OMM12 consists of 12 sequenced and publically available strains isolated from mice, representing five bacterial phyla that are naturally abundant in the murine gastrointestinal tract (Lagkouvardos et al., 2016). Under germ-free conditions, the OMM12 colonizes mice stably over multiple generations. Here, we investigated whether stably colonized OMM12 mouse lines could be reproducibly established in different animal facilities. Germ-free C57Bl/6J mice were inoculated with a frozen mixture of the OMM12 strains. Within 2 weeks after application, the OMM12 community reached the same stable composition in all facilities, as determined by fecal microbiome analysis. We show that a second application of the OMM12 strains after 72 h leads to a more stable community composition than a single application. The availability of such protocols for reliable de novo generation of gnotobiotic rodents will certainly contribute to increasing experimental reproducibility in biomedical research.
German Center for Infection Research LMU Munich Munich Germany
German Center for Infection Research Tübingen Germany
Institute of Food Nutrition and Health ETH Zürich Zurich Switzerland
Institute of Medical Microbiology and Hygiene University of Tübingen Tübingen Germany
Institute of Microbiology of the Czech Academy of Sciences Nový Hrádek Czechia
See more in PubMed
Anderson M. J., Willis T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84 511–525. 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 DOI
Bangsgaard Bendtsen K. M., Krych L., Sorensen D. B., Pang W., Nielsen D. S., Josefsen K., et al. (2012). Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One 7:e46231. 10.1371/journal.pone.0046231 PubMed DOI PMC
Barroso-Batista J., Sousa A., Lourenco M., Bergman M. L., Sobral D., Demengeot J., et al. (2014). The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10:e1004182. 10.1371/journal.pgen.1004182 PubMed DOI PMC
Becker N., Kunath J., Loh G., Blaut M. (2011). Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes 2 25–33. 10.4161/gmic.2.1.14651 PubMed DOI
Bergstrom J. H., Berg K. A., Rodriguez-Pineiro A. M., Stecher B., Johansson M. E., Hansson G. C. (2014). AGR2, an endoplasmic reticulum protein, is secreted into the gastrointestinal mucus. PLoS One 9:e104186. 10.1371/journal.pone.0104186 PubMed DOI PMC
Brugiroux S., Beutler M., Pfann C., Garzetti D., Ruscheweyh H. J., Ring D., et al. (2016). Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2:16215. 10.1038/nmicrobiol.2016.215 PubMed DOI
Celesk R. A., Asano T., Wagner M. (1976). The size pH, and redox potential of the cecum in mice associated with various microbial floras. Proc Soc. Exp. Biol. Med. 151 260–263. 10.3181/00379727-151-39187 PubMed DOI
Clavel T., Lagkouvardos I., Blaut M., Stecher B. (2016). The mouse gut microbiome revisited: from complex diversity to model ecosystems. Int. J. Med. Microbiol. 306 316–327. 10.1016/j.ijmm.2016.03.002 PubMed DOI
De Paepe M., Gaboriau-Routhiau V., Rainteau D., Rakotobe S., Taddei F., Cerf-Bensussan N. (2011). Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut. PLoS Genet. 7:e1002107. 10.1371/journal.pgen.1002107 PubMed DOI PMC
Deloris Alexander A., Orcutt R. P., Henry J. C., Baker J., Jr., Bissahoyo A. C., Threadgill D. W. (2006). Quantitative PCR assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm. Genome 17 1093–1104. 10.1007/s00335-006-0063-1 PubMed DOI
Desai M. S., Seekatz A. M., Koropatkin N. M., Kamada N., Hickey C. A., Wolter M., et al. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339-1353.e21. 10.1016/j.cell.2016.10.043 PubMed DOI PMC
Eppig J. T., Blake J. A., Bult C. J., Kadin J. A., Richardson J. E. Mouse Genome Database, (2015). The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 43 D726–D736. PubMed PMC
Faith J. J., McNulty N. P., Rey F. E., Gordon J. I. (2011). Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333 101–104. 10.1126/science.1206025 PubMed DOI PMC
Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K., et al. (2016). Population-level analysis of gut microbiome variation. Science 352 560–564. 10.1126/science.aad3503 PubMed DOI
Forster S. C., Kumar N., Anonye B. O., Almeida A., Viciani E., Stares M. D. M., et al. (2019). A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37 186–192. 10.1038/s41587-018-0009-7 PubMed DOI PMC
Franklin C. L., Ericsson A. C. (2017). Microbiota and reproducibility of rodent models. Lab Anim. 46 114–122. 10.1038/laban.1222 PubMed DOI PMC
Friedman E. S., Bittinger K., Esipova T. V., Hou L., Chau L., Jiang J., et al. (2018). Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc. Natl. Acad. Sci. U.S.A. 115 4170–4175. 10.1073/pnas.1718635115 PubMed DOI PMC
Garzetti D., Brugiroux S., Bunk B., Pukall R., McCoy K. D., Macpherson A. J., et al. (2017). High-quality whole-genome sequences of the oligo-mouse-microbiota bacterial community. Genome Announc. 5:e758-17. 10.1128/genomeA.00758-17 PubMed DOI PMC
Geuking M. B., Cahenzli J., Lawson M. A., Ng D. C., Slack E., Hapfelmeier S., et al. (2011). Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34 794–806. 10.1016/j.immuni.2011.03.021 PubMed DOI
Gomes-Neto J. C., Kittana H., Mantz S., Segura Munoz R. R., Schmaltz R. J., Bindels L. B., et al. (2017). A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci. Rep. 7:17707. 10.1038/s41598-017-18014-5 PubMed DOI PMC
Hadrich D. (2018). Microbiome research is becoming the key to better understanding health and nutrition. Front. Genet. 9:212. 10.3389/fgene.2018.00212 PubMed DOI PMC
Herp S., Brugiroux S., Garzetti D., Ring D., Jochum L. M., Beutler M., et al. (2019). Mucispirillum schaedleri antagonizes salmonella virulence to protect mice against colitis. Cell Host Microbe 25:681-694.e8. 10.1016/j.chom.2019.03.004 PubMed DOI
Hildebrand F., Nguyen T. L., Brinkman B., Yunta R. G., Cauwe B., Vandenabeele P., et al. (2013). Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 14:R4. 10.1186/gb-2013-14-1-r4 PubMed DOI PMC
Hildebrandt M. A., Hoffmann C., Sherrill-Mix S. A., Keilbaugh S. A., Hamady M., Chen Y. Y., et al. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137 e1–e2. 10.1053/j.gastro.2009.08.042 PubMed DOI PMC
Hugon P., Dufour J. C., Colson P., Fournier P. E., Sallah K., Raoult D. (2015). A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 15 1211–1219. 10.1016/S1473-3099(15)00293-5 PubMed DOI
Ivanov I. I., Atarashi K., Manel N., Brodie E. L., Shima T., Karaoz U., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 485–498. 10.1016/j.cell.2009.09.033 PubMed DOI PMC
Knight R., Callewaert C., Marotz C., Hyde E. R., Debelius J. W., McDonald D., et al. (2017). The microbiome and human biology. Annu. Rev. Genomics Hum. Genet. 18 65–86. PubMed
Lagkouvardos I., Lesker T. R., Hitch T. C. A., Galvez E. J. C., Smit N., Neuhaus K., et al. (2019). Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28. 10.1186/s40168-019-0637-2 PubMed DOI PMC
Lagkouvardos I., Pukall R., Abt B., Foesel B. U., Meier-Kolthoff J. P., Kumar N., et al. (2016). The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat. Microbiol. 1:16131. PubMed
Laukens D., Brinkman B. M., Raes J., De Vos M., Vandenabeele P. (2015). Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol. Rev. 40 117–132. 10.1093/femsre/fuv036 PubMed DOI PMC
Leatham M. P., Stevenson Gauger E. J., Krogfelt K. A., Lins J. J., Haddock T. L., et al. (2005). Mouse intestine selects nonmotile flhDC mutants of Escherichia coli MG1655 with increased colonizing ability and better utilization of carbon sources. Infect. Immun. 73 8039–8049. 10.1128/iai.73.12.8039-8049.2005 PubMed DOI PMC
Lee K. S., Palatinszky M., Pereira F. C., Nguyen J., Fernandez V. I., Mueller A. J., et al. (2019). An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4 1035–1048. 10.1038/s41564-019-0394-9 PubMed DOI
Li H., Limenitakis J. P., Fuhrer T., Geuking M. B., Lawson M. A., Wyss M., et al. (2015). The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6:8292. 10.1038/ncomms9292 PubMed DOI PMC
Macpherson A. J., McCoy K. D. (2015). Standardised animal models of host microbial mutualism. Mucosal Immunol. 8 476–486. 10.1038/mi.2014.113 PubMed DOI PMC
Mamantopoulos M., Ronchi F., McCoy K. D., Wullaert A. (2018). Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes 9 374–381. 10.1080/19490976.2017.1421888 PubMed DOI PMC
McCoy K. D., Geuking M. B., Ronchi F. (2017). Gut microbiome standardization in control and experimental mice. Curr. Protoc. Immunol. 117 2311–23113. 10.1002/cpim.25 PubMed DOI
Ooi J. H., Waddell A., Lin Y. D., Albert I., Rust L. T., Holden V., et al. (2014). Dominant effects of the diet on the microbiome and the local and systemic immune response in mice. PLoS One 9:e86366. 10.1371/journal.pone.0086366 PubMed DOI PMC
Orcutt R. P., Gianni F. J., Judge R. J. (1987). Development of an “altered Schaedler flora” for NCI gnotobiotic rodents. Microecol. Ther. 17:59.
Park S. W., Zhen G., Verhaeghe C., Nakagami Y., Nguyenvu L. T., Barczak A. J., et al. (2009). The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl. Acad. Sci. U.S.A. 106 6950–6955. 10.1073/pnas.0808722106 PubMed DOI PMC
Rausch P., Basic M., Batra A., Bischoff S. C., Blaut M., Clavel T., et al. (2016). Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306 343–355. 10.1016/j.ijmm.2016.03.004 PubMed DOI
Reese A. T., Cho E. H., Klitzman B., Nichols S. P., Wisniewski N. A., Villa M. M., et al. (2018). Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. eLife 7:e35987. 10.7554/eLife.35987 PubMed DOI PMC
Robinson C. D., Klein H. S., Murphy K. D., Parthasarathy R., Guillemin K., Bohannan B. J. M. (2018). Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 16:e2006893. 10.1371/journal.pbio.2006893 PubMed DOI PMC
Sadler R., Singh V., Benakis C., Garzetti D., Brea D., Stecher B., et al. (2017). Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain Behav. Immun. 66 23–30. 10.1016/j.bbi.2017.03.011 PubMed DOI
Sofi M. H., Gudi R., Karumuthil-Melethil S., Perez N., Johnson B. M., Vasu C. (2014). pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes Metab. Res. Rev. 63 632–644. 10.2337/db13-0981 PubMed DOI PMC
Stecher B., Chaffron S., Kappeli R., Hapfelmeier S., Freedrich S., Weber T. C., et al. (2010). Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 6:e1000711. 10.1371/journal.ppat.1000711 PubMed DOI PMC
Studer N., Desharnais L., Beutler M., Brugiroux S., Terrazos M. A., Menin L., et al. (2016). Functional intestinal bile acid 7alpha-Dehydroxylation by clostridium scindens associated with protection from clostridium difficile infection in a gnotobiotic mouse model. Front. Cell Infect. Microbiol. 6:191. 10.3389/fcimb.2016.00191 PubMed DOI PMC
Surana N. K., Kasper D. L. (2017). Moving beyond microbiome-wide associations to causal microbe identification. Nature 552 244–247. 10.1038/nature25019 PubMed DOI PMC
Taylor K., Gordon N., Langley G., Higgins W. (2008). Estimates for worldwide laboratory animal use in 2005. Altern. Lab. Anim. 36 327–342. 10.1177/026119290803600310 PubMed DOI
Thiemann S., Smit N., Roy U., Lesker T. R., Galvez E. J. C., Helmecke J., et al. (2017). Enhancement of IFNgamma production by distinct commensals ameliorates Salmonella-Induced Disease. Cell Host Microbe 21:682-694.e5. 10.1016/j.chom.2017.05.005 PubMed DOI
Trexler P. C., Reynolds L. I. (1957). Flexible film apparatus for the rearing and use of germfree animals. Appl. Microbiol. 5 406–412. PubMed PMC
Uchimura Y., Fuhrer T., Li H., Lawson M. A., Zimmermann M., Yilmaz B., et al. (2018). Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49:545-559.e5. 10.1016/j.immuni.2018.08.004 PubMed DOI PMC
Ursell L. K., Clemente J. C., Rideout J. R., Gevers D., Caporaso J. G., Knight R. (2012). The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J. Allergy Clin. Immunol. 129 1204–1208. 10.1016/j.jaci.2012.03.010 PubMed DOI PMC
Velazquez E. M., Nguyen H., Heasley K. T., Saechao C. H., Gil L. M., Rogers A. W. L., et al. (2019). Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4 1057–1064. 10.1038/s41564-019-0407-8 PubMed DOI PMC
Wang J., Linnenbrink M., Kunzel S., Fernandes R., Nadeau M. J., Rosenstiel P., et al. (2014). Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A. 111 E2703–E2710. 10.1073/pnas.1402342111 PubMed DOI PMC
Wullaert A., Lamkanfi M., McCoy K. D. (2018). Defining the impact of host genotypes on microbiota composition requires meticulous control of experimental variables. Immunity 48 605–607. 10.1016/j.immuni.2018.04.001 PubMed DOI
Wymore Brand M., Wannemuehler M. J., Phillips G. J., Proctor A., Overstreet A. M., Jergens A. E., et al. (2015). The altered schaedler flora: continued applications of a defined murine microbial community. ILAR J. 56 169–178. 10.1093/ilar/ilv012 PubMed DOI PMC
Xiao L., Feng Q., Liang S., Sonne S. B., Xia Z., Qiu X., et al. (2015). A catalog of the mouse gut metagenome. Nat. Biotechnol. 33 1103–1108. 10.1038/nbt.3353 PubMed DOI