Stromal Vascular Fraction and its Role in the Management of Alopecia: A Review

. 2019 Nov ; 12 (11) : 35-44. [epub] 20191101

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32038756

Adipose cells organized in small clusters under the reticular dermis closely interact with hair follicular cells and regulate the hair cycle. Intradermal adipocyte progenitor cells are activated toward the end of the telogen phase to proliferate and differentiate into mature adipocytes. These cells, surrounding the hair follicles, secrete signaling molecules that control the progression of the hair cycle. Diseases associated with defects in adipocyte homeostasis, such as lipodystrophy and focal dermal hypoplasia, lead to alopecia. In this review, we discuss the potential influence of stromal vascular fraction from adipose tissue in the management of alopecia as well as its involvement in preclinical and clinical trials.

Zobrazit více v PubMed

Avram AS, Avram MM, James WD. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol. 2005;53(4):671–683. PubMed

Gentile P, Orlandi A, Scioli MG et al. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med. 2012;1(3):230–236. PubMed PMC

Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. PubMed

Bourin P, Bunnell BA, Casteilla L et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–648. PubMed PMC

Cohen SR, Hewett S, Ross L et al. Regenerative cells for facial surgery: biofilling and biocontouring. Aesthet Surg J. 2017;37(Suppl 3):S16–S32. PubMed

Rehman J, Traktuev D, Li J, Merfeld-Clauss S et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–1298. PubMed

Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014;22(3):313–325. PubMed

Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood). 2001;226(6):507–520. PubMed

In ‘t. Anker PS, Scherjon SA, Kleijburg-van der Keur C et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–1345. PubMed

Young HE, Steele TA, Bray RA et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec. 2001;264(1):51–62. PubMed

Zvaifler NJ, Marinova-Mutafchieva L, Adams G et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2(6):477–488. PubMed PMC

Aust L, Devlin B, Foster SJ et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14. PubMed

Mazo M, Cemborain A, Gavira JJ et al. Adipose stromal vascular fraction improves cardiac function in chronic myocardial infarction through differentiation and paracrine activity. Cell Transplant. 2012;21(5):1023–1037. PubMed

Premaratne GU, Ma LP, Fujita M et al. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg. 2011;6:43. PubMed PMC

Rajashekhar G, Ramadan A, Abburi C et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy. PLoS One. 2014;9(1):e84671. PubMed PMC

Pers YM, Rackwitz L, Ferreira R et al. Adipose Mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5(7):847–856. PubMed PMC

Charles-de-Sa L, Gontijo-de-Amorim NF, Maeda Takiya C et al. Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. Plast Reconstr Surg. 2015;135(4):999–1009. PubMed

Moustaki M, Papadopoulos O, Verikokos C et al. Application of adipose-derived stromal cells in fat grafting: basic science and literature review. Exp Ther Med. 2017;14(3):2415–2423. PubMed PMC

Nseir I, Delaunay F, Latrobe C et al. Use of adipose tissue and stromal vascular fraction in hand surgery. Orthop Traumatol Surg Res. 2017;103(6):927–932. PubMed

Rongioletti F, Christana K. Cicatricial (scarring) alopecias: an overview of pathogenesis, classification, diagnosis, and treatment. Am J Clin Dermatol. 2012;13(4):247–260. PubMed

Qi J, Garza LA. An overview of alopecias. Cold Spring Harb Perspect Med. 2014;4(3):pii: a013615. PubMed PMC

Piraccini BM, Alessandrini A. Androgenetic alopecia. G Ital Dermatol Venereol. 2014;149(1):15–24. PubMed

Varothai S, Bergfeld WF. Androgenetic alopecia: an evidence-based treatment update. Am J Clin Dermatol. 2014;15(3):217–230. PubMed

Ramos PM, Miot HA. Female pattern hair loss: a clinical and pathophysiological review. Anais Brasileiros de Dermatologia. 2015;90(4):529–543. PubMed PMC

Ellis JA, Sinclair R, Harrap SB. Androgenetic alopecia: pathogenesis and potential for therapy. Expert Rev Mol Med. 2002;4:1–11. PubMed

Agarwal AK, Garg A. Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomics Hum Genet. 2006;7:175–199. PubMed

Goltz RW. Focal dermal hypoplasia syndrome. An update. Arch Dermatol. 1992;128(8):1108–1111. PubMed

Hausman GJ, Martin RJ. The development of adipocytes located around hair follicles in the fetal pig. J Anim Sci. 1982;54(6):1286–1296. PubMed

Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication. Exp Dermatol. 2012;21(11):827–830. PubMed PMC

Conde-Green A, Kotamarti VS, Sherman LS et al. Shift toward mechanical isolation of adipose-derived stromal vascular fraction: review of upcoming techniques. Plast Reconstr Surg Glob Open. 2016;4(9):e1017. PubMed PMC

Aronowitz JA, Lockhart RA, Hakakian CS. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 2015;4:713. PubMed PMC

Levi B, James AW, Glotzbach JP et al. Depot-specific variation in the osteogenic and adipogenic potential of human adipose-derived stromal cells. Plast Reconstr Surg. 2010;126(3):822–834. PubMed

Aksu AE, Rubin JP, Dudas JR, Marra KG. Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg. 2008;60(3):306–322. PubMed

De Ugarte DA, Morizono K, Elbarbary A et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–109. PubMed

Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg. 2008;60(5):538–544. PubMed PMC

Varghese J, Griffin M, Mosahebi A, Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther. 2017;8(1):45. PubMed PMC

Oberbauer E, Steffenhagen C, Wurzer C et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen (Lond). 2015;4:7. PubMed PMC

Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. PubMed PMC

Dykstra JA, Facile T, Patrick RJ et al. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096–1108. PubMed PMC

Lockhart RA, Aronowitz JA, Dos-Anjos Vilaboa S. Use of freshly isolated human adipose stromal cells for clinical applications. Aesthet Surg J. 2017;37(Suppl 3):S4–S8. PubMed

Carvalho PP, Gimble JM, Dias IR et al. Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng Part C Methods. 2013;19(6):473–478. PubMed

Kirkpatrick CJ, Melzner I, Goller T. Comparative effects of trypsin, collagenase and mechanical harvesting on cell membrane lipids studied in monolayer-cultured endothelial cells and a green monkey kidney cell line. Biochim Biophys Acta. 1985;846(1):120–126. PubMed

Baptista LS, do Amaral RJ, Carias RB et al. An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples. Cytotherapy. 2009;11(6):706–715. PubMed

Francis MP, Sachs PC, Elmore LW, Holt SE. Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis. 2010;6(1):11–14. PubMed PMC

Markarian CF, Frey GZ, Silveira MD et al. Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnol Lett. 2014;36(4):693–702. PubMed

Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy. 2013;15(8):979–985. PubMed

Raposio E, Caruana G, Bonomini S, Libondi G. A novel and effective strategy for the isolation of adipose-derived stem cells: minimally manipulated adipose-derived stem cells for more rapid and safe stem cell therapy. Plast Reconstr Surg. 2014;133(6):1406–1409. PubMed

Guo J, Nguyen A, Banyard DA et al. Stromal vascular fraction: a regenerative reality? Part 2. Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg. 2016;69(2):180–188. PubMed

SundarRaj S, Deshmukh A, Priya N et al. Development of a system and method for automated isolation of stromal vascular fraction from adipose tissue lipoaspirate. Stem Cells Int. 2015;2015:109353. PubMed PMC

Bagno LL, Carvalho D, Mesquita F et al. Sustained IGF-1 secretion by adipose-derived stem cells improves infarcted heart function. Cell Transplant. 2016;25(9):1609–1622. PubMed

Manferdini C, Maumus M, Gabusi E et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65(5):1271–1281. PubMed

Penuelas O, Melo E, Sanchez C et al. Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch. Respir Physiol Neurobiol. 2013;188(1):1–8. PubMed

Kim WS, Park BS, Kim HK et al. Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci. 2008;49(2):133–142. PubMed

Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2(7):a006692. PubMed PMC

Zimmerlin L, Donnenberg VS, Pfeifer ME et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010;77(1):22–30. PubMed PMC

Hager G, Holnthoner W, Wolbank S et al. Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy. 2013;15(11):1426–1435. PubMed

Rosell A, Morancho A, Navarro-Sobrino M et al. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One. 2013;8(9):e73244. PubMed PMC

Corselli M, Crisan M, Murray IR et al. Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A. 2013;83(8):714–720. PubMed

Gokcinar-Yagci B, Uckan-Cetinkaya D, Celebi-Saltik B. Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev. 2015;11(4):549–559. PubMed

Hellstrom M, Gerhardt H, Kalen M et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–553. PubMed PMC

Dohgu S, Takata F, Yamauchi A et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-beta production. Brain Res. 2005;1038(2):208–215. PubMed

Armulik A, Genove G, Mae M et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–561. PubMed

Kim JA, Tran ND, Li Z et al. Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab. 2006;26(2):209–217. PubMed

Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct. 2003;28(2):105–112. PubMed

Tu Z, Li Y, Smith DS et al. Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci. 2011;52(12):9005–9010. PubMed PMC

Castejon OJ. Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema. Folia Neuropathol. 2011;49(3):162–173. PubMed

Farrington-Rock C, Crofts NJ, Doherty MJ et al. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. 2004;110(15):2226–2232. PubMed

James AW, Zara JN, Zhang X et al. Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med. 2012;1(6):510–519. PubMed PMC

Astori G, Vignati F, Bardelli S et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med. 2007;5:55. PubMed PMC

Navarro A, Marin S, Riol N et al. Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res Ther. 2014;5(2):50. PubMed PMC

Koh YJ, Koh BI, Kim H et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31(5):1141–1150. PubMed

Morris ME, Beare JE, Reed RM et al. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b+ cell-dependent mechanism. Stem Cells Transl Med. 2015;4(4):369–380. PubMed PMC

Fabriek BO, van Bruggen R, Deng DM et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009;113(4):887–892. PubMed

Poitevin S, Garnotel R, Antonicelli F et al. Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway. J Thromb Haemost. 2008;6(9):1586–1594. PubMed

Hameedaldeen A, Liu J, Batres A et al. FOXO1, TGF-beta regulation and wound healing. Int J Mol Sci. 2014;15(9):16257–16269. PubMed PMC

Zeyda M, Farmer D, Todoric J et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond). 2007;31(9):1420–1428. PubMed

Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–652. PubMed PMC

Fantin A, Vieira JM, Gestri G et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–840. PubMed PMC

Eto H, Ishimine H, Kinoshita K et al. Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency. Stem Cells Dev. 2013;22(6):985–997. PubMed PMC

Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302. PubMed PMC

Feuerer M, Herrero L, Cipolletta D et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–939. PubMed PMC

Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–569. PubMed

Gondek DC, Lu LF, Quezada SA et al. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174(4):1783–1786. PubMed

Tiemessen MM, Jagger AL, Evans HG et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104(49):19446–19451. PubMed PMC

Kondelkova K, Vokurkova D, Krejsek J et al. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove). 2010;53(2):73–77. PubMed

Ramakrishnan VM, Boyd NL. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev. 2018;24(4):289–299. PubMed PMC

Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 2013;4:201. PubMed PMC

Herdrich BJ, Lind RC, Liechty KW. Multipotent adult progenitor cells: their role in wound healing and the treatment of dermal wounds. Cytotherapy. 2008;10(6):543–550. PubMed

Cai L, Johnstone BH, Cook TG et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization. Stem Cells. 2007;25(12):3234–3243. PubMed

Bluher S, Kratzsch J, Kiess W. Insulin-like growth factor I, growth hormone and insulin in white adipose tissue. Best Pract Res Clin Endocrinol Metab. 2005;19(4):577–587. PubMed

Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol. 2009;5(7):e1000445. PubMed PMC

Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625–637. PubMed PMC

Sun M, He Y, Zhou T et al. Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int. 2017;2017:3105780. PubMed PMC

Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014;40(7):1375–1383. PubMed

Guillaume-Jugnot P, Daumas A, Magalon J et al. Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Rheumatology (Oxford). 2016;55(2):301–306. PubMed

Won CH, Yoo HG, Kwon OS et al. Hair growth promoting effects of adipose tissue-derived stem cells. J Dermatol Sci. 2010;57(2):134–137. PubMed

Huang CF, Chang YJ, Hsueh YY et al. Assembling composite dermal papilla spheres with adipose-derived stem cells to enhance hair follicle induction. Sci Rep. 2016;6:26436. PubMed PMC

Won CH, Park GH, Wu X et al. The basic mechanism of hair growth stimulation by adipose-derived stem cells and their secretory factors. Curr Stem Cell Res Ther. 2017;12(7):535–543. PubMed

Park BS, Kim WS, Choi JS et al. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res. 2010;31(1):27–34. PubMed

Jeong YM, Sung YK, Kim WK et al. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species. Stem Cells Dev. 2013;22(1):158–168. PubMed PMC

Lee A, Bae S, Lee SH et al. Hair growth promoting effect of dermal papilla like tissues from canine adipose-derived mesenchymal stem cells through vascular endothelial growth factor. J Vet Med Sci. 2017;78(12):1811–1818. PubMed PMC

Fukuoka H, Suga H, Narita K et al. The latest advance in hair regeneration therapy using proteins secreted by adipose-derived stem cells. Am J Cosmetic Surg. 2012;29(4):273–282.

Kaufman KD, Olsen EA, Whiting D et al. Finasteride in the treatment of men with androgenetic alopecia. Finasteride male pattern hair loss study group. J Am Acad Dermatol. 1998;39(4 Pt 1):578–589. PubMed

Fukuoka H, Suga H. Hair regeneration treatment using adipose-derived stem cell conditioned medium: follow-up eith trichograms. Eplasty. 2015;15:e10. PubMed PMC

Perez-Meza D, Ziering C, Sforza M et al. Hair follicle growth by stromal vascular fraction-enhanced adipose transplantation in baldness. Stem Cells Cloning. 2017;10:1–10. PubMed PMC

Shin H, Ryu HH, Kwon O et al. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss. a retrospective case series study. Int J Dermatol. 2015;54(6):730–735. PubMed

Aronowitz JA, Lockhart RA, Birnbaum ZE et al. Abstract. Stromal vascular fraction enhanced adipose transplantation in hair loss early experience & active phase II FDA investigation. Plast Reconstr Surg Glob Open. 2016;4(9 Suppl):50.

ClinicalTrials.gov. Search of adipose | alopecia—list results. ClinicalTrials.gov. 2017.

Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts. J Invest Dermatol. 2005;125(5):873–882. PubMed

Su HY, Hickford JG, Bickerstaffe R, Palmer BR. Insulin-like growth factor 1 and hair growth. Dermatol Online J. 1999;5(2):1. PubMed

Tomita Y, Akiyama M, Shimizu H. PDGF isoforms induce and maintain anagen phase of murine hair follicles. J Dermatol Sci. 2006;43(2):105–115. PubMed

Li J, Yang Z, Li Z et al. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-beta1 in C57BL/6 mice in vivo. Growth Horm IGF Res. 2014;24(2-3):89–94. PubMed

Shin H, Yoo HG, Inui S et al. Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells. BMB Rep. 2013;46(9):460–464. PubMed PMC

Lin WH, Xiang LJ, Shi HX et al. Fibroblast growth factors stimulate hair growth through beta-catenin and Shh expression in C57BL/6 mice. Biomed Res Int. 2015;2015:730139. PubMed PMC

Ozeki M, Tabata Y. Promoted growth of murine hair follicles through controlled release of basic fibroblast growth factor. Tissue Eng. 2002;8(3):359–366. PubMed

Lindner G, Menrad A, Gherardi E et al. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J. 2000;14(2):319–332. PubMed

Jindo T, Tsuboi R, Takamori K, Ogawa H. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles. J Invest Dermatol. 1998;110(4):338–342. PubMed

Li W, Man XY, Li CM et al. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Exp Cell Res. 2012;318(14):1633–1640. PubMed

Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107(4):409–417. PubMed PMC

Ying W, Min-min D, Hai-bo Y, Song-tao G. In vitro differentiation of adipose-derived stem cells into hair cell-like cells in Guinea pigs. J Otol. 2007;2(2):97–101.

Suzuki E, Fujita D, Takahashi M et al. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J Cardiol. 2015;7(8):454–465. PubMed PMC

Kianifard F, Islam MZ. A guide to the design and analysis of small clinical studies. Pharm Stat. 2011;10(4):363–368. PubMed

Chapter 8. Assessing risk of bias in included studies. Cochrane Handbook for Systematic Reviews of Interventions. In: Higgins J, Altman D, Sterne J, editors; Higgins J, Green S, editors. London, UK: The Cochrane Collaboration; 2011. Vol. 5.1.0.

Chow S, Liu J. In. Design and Analysis of Clinical Trials. 2nd ed. Hoboken, NJ: Wiley; 2004. Bias and variability; pp. 47–53.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace