γ-Butyrolactone Copolymerization with the Well-Documented Polymer Drug Carrier Poly(ethylene oxide)-block-poly(ε-caprolactone) to Fine-Tune Its Biorelevant Properties

. 2020 May ; 20 (5) : e1900408. [epub] 20200316

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32174005

Grantová podpora
Ministry of Education - International
# POLYMAT LO1507 Youth and Sport of the Czech Republic - International
SVV260440 Charles University - International
Department of Analytical Chemistry - International
Faculty of Science - International
VEGA - International
#POLYMAT LO1507 Ministerstvo Školství, Mládeže a Tělovýchovy - International
2/0177/17 Agentúra na Podporu Výskumu a Vývoja - International
16-0550 Agentúra na Podporu Výskumu a Vývoja - International
2/0177/17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International
17-07164S Grantová Agentura České Republiky - International
17-09998S Grantová Agentura České Republiky - International

Polymeric drug carriers exhibit excellent properties that advance drug delivery systems. In particular, carriers based on poly(ethylene oxide)-block-poly(ε-caprolactone) are very useful in pharmacokinetics. In addition to their proven biocompatibility, there are several requirements for the efficacy of the polymeric drug carriers after internalization, e.g., nanoparticle behavior, cellular uptake, the rate of degradation, and cellular localization. The introduction of γ-butyrolactone units into the hydrophobic block enables the tuning of the abovementioned properties over a wide range. In this study, a relatively high content of γ-butyrolactone units with a reasonable yield of ≈60% is achieved by anionic ring-opening copolymerization using 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a very efficient catalyst in the nonpolar environment of toluene with an incorporated γ-butyrolactone content of ≈30%. The content of γ-butyrolactone units can be easily modulated according to the feed ratio of the monomers. This method enables control over the rate of degradation so that when the content of γ-butyrolactone increases, the rate of degradation increases. These findings broaden the application possibilities of polyester-polyether-based nanoparticles for biomedical applications, such as drug delivery systems.

Zobrazit více v PubMed

V. P. Torchilin, Pharm. Res. 2006, 24, 1.

R. Palao-Suay, L. G. Gómez-Mascaraque, M. R. Aguilar, B. Vázquez-Lasa, J. S. Román, Prog. Polym. Sci. 2016, 53, 207.

I. Schlachet, J. Trousil, D. Rak, K. D. Knudsen, E. Pavlova, B. Nyström, A. Sosnik. Carbohydr. Polym. 2019, 212, 412.

A. C. Albertsson, I . K. Varma, Biomacromolecules 2003, 4, 1466.

P. Markland, V. C. Yang, Encyclopedia of Pharmaceutical Technology, Vol. 1, 3rd ed. (Ed: J. Swarbrick), Informa Helthcare USA, New York 2007.

L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762.

T. Moore, R. Adhikari, P. Gunatillake, Biomaterials 2005, 26, 3771.

A. Nakayama, N. Kawasaki, S. Aiba, Y. Maeda, I. Arvanitoyannis, N. Yamamoto, Polymer 1998, 39, 1213.

D. P. Martin, S. F. Williams, Biochem. Eng. J. 2003, 16, 97.

P. Olsén, K. Odelius, A. C. Albertsson, Biomacromolecules 2016, 17, 699.

D. Myers, A. Cyriac, C. K. Williams, Nat. Chem. 2015, 8, 3.

W. H. Carothers, Chem. Rev. 1931, 8, 353.

F. Korte, W. Glet, J. Polym. Sci, Part B: Polym. Lett. 1966, 4, 685.

K. Yamashita, K. Yamamoto, J.-i. Kadokawa, Chem. Lett. 2014, 43, 213.

M. Hong, E. Y.-X. Chen, Nat. Chem. 2015, 8, 42.

M. Hong, E. Y.-X. Chen, Angew. Chem., Int. Ed. 2016, 55, 4188.

N. Zhao, C. Ren, H. Li, Y. Li, S. Liu, Z. Li, Angew. Chem., Int. Ed. 2017, 56, 12987.

L. Lin, D. Han, J. Qin, S. Wang, M. Xiao, L. Sun, M. Yuezhong, Macromolecules 2018, 51, 9317.

C.-J. Zhang, L.-F. Hu, H.-L. Wu, X.-H. Cao, X.-H. Zhang, Macromolecules 2018, 51, 8705.

P. Walther, W. Frey, S. Naumann, Polym. Chem. 2018, 9, 3674.

Y. Shen, Z. Zhao, Y. Li, S. Liu, F. Liu, Z. Li, Polym. Chem. 2019, 10, 1231.

M. Hong, X. Tang, B. S. Newell, E. Y. X. Chen, Macromolecules 2017, 50, 8469.

P. Walther, S. Naumann, Macromolecules 2017, 50, 8406.

N. Dolan, D. P. Gavin, A. Eshwika, K. Kavanagh, J. McGinley, J. C. Stephens, Bioorg. Med. Chem. Lett. 2016, 26, 630.

L. Luo, J. Tam, D. Maysinger, A. Eisenberg, Bioconjugate Chem. 2002, 13, 1259.

S. Petrova, D. Klepac, R. Konefał, S. Kereïche, L. Kováčik, S. K. Filippov, Macromolecules 2016, 49, 5407.

J. Trousil, S. K. Filippov, M. Hrubý, T. Mazel, Z. Syrová, D. Cmarko, S. Svidensk, J. Matějková, L. Kováčik, B. Porsch, R. Konefał, R. Lund, B. Nyström, I. Raškab, P. Štěpánek, Nanomedicine 2017, 13, 307.

J. Trousil, Z. Syrová, N.-J. K. Dal, D. Rak, R. Konefał, E. Pavlova, J. Matějková, D. Cmarko, P. Kubíčková, O. Pavliš, T. Urbánek, M. Sedlák, F. Fenaroli, I. Raška, P. Štěpánek, M. Hrubý, Biomacromolecules 2019, 20, 1798.

M. Bauer, C. Lautenschlaeger, K. Kempe, L. Tauhardt, U. S. Schubert, D. Fischer, Macromol. Biosci. 2012, 12, 986.

P. Ralph, M. A. Moore, K. Nilsson, J. Exp. Med. 1976, 143, 1528.

Biological Evaluation of Medical Devices - Part 5: Tests for In Vitro Cytotoxicity, International Organization for Standardization, Geneva, Switzerland 2009.

A. Duda, S. Penczek, P. Dubois, D. Mecerreyes, R. Jérôme, Macromol. Chem. Phys. 1996, 197, 1273.

M. Danko, J. Mosnáček, Polimery 2017, 62, 272.

A. Bhaw-Luximon, D. Jhurry, S. Motala-Timol, Y. Lochee, Macromol. Symp. 2005, 231, 60.

M. Dionzou, A. Morère, C. Roux, B. Lonetti, J. D. Marty, C. Mingotaud, P. Joseph, D. Goudounèche, B. Payré, M. Léonettie, A.-F. Mingotaud, Soft Matter. 2016, 12, 2166.

R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, K. J. Wilkinson, Environ. Sci. Technol. 2009, 43, 7277.

O. Sedlacek, B. D. Monnery, S. K. Filippov, R. Hoogenboom, M. Hruby, Macromol. Rapid Commun. 2012, 33, 1648.

S. Agarwal, X. Xie, Macromolecules 2003, 36, 3545.

A. Ianiro, J. Patterson, Á. González García, M. M. J. van Rijt, M. M. R. M. Hendrix, N. A. J. M. Sommerdijk, I. K. Voets, A. C. C. Esteves, R. Tuinier, J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 330.

S. Zolls, R. Tantipolphan, M. Wiggenhorn, G. Winter, W. Jiskoot, W. Friess, A. Hawe, J. Pharm. Sci. 2012, 101, 914.

M. Ukawala, T. Rajyaguru, K. Chaudhari, A. S. Manjappa, S. Pimple, A. K. Babbar, R. Mathur, A. K. Mishra, R. S. Murthy, Drug Delivery 2012, 19, 155.

Z. Zhang, Q. Qu, J. Li, S. Zhou, Macromol. Biosci. 2013, 13, 789.

K. Kolouchova, O. Sedlacek, D. Jirak, D. Babuka, J. Blahut, J. Kotek, M. Vit, J. Trousil, R. Konefał, O. Janouskova, B. Podhorska, M. Slouf, M. Hruby, Biomacromolecules 2018, 19, 3515.

P. Grossen, D. Witzigmann, S. Sieber, J. Huwyler, J. Controlled Release 2017, 260, 46.

P. Grossen, G. Québatte, D. Witzigmann, C. Prescianotto-Baschong, L.-H. Dieu, J. Huwyler, J. Nanomater. 2016, 2016, 13.

J. Jin, B. Sui, J. Gou, J. Liu, X. Tang, H. Xu, Y. Zhang, X. Jin, PLoS One 2014, 9, e112200.

Y. Pei, Y. Yeo, J. Controlled Release 2016, 240, 202.

S. M. Abaza, Parasitol. United J. 2016, 9, 1.

I. Vainshtein, L. K. Roskos, J. Cheng, M. A. Sleeman, B. Wang, M. Liang, Pharm. Res. 2015, 32, 286.

S. Behzadi, V. Serpooshan, W. Tao, M. A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, M. Mahmoudi, Chem. Soc. Rev. 2017, 46, 4218.

M. J. Czaja, A. M. Cuervo, Autophagy 2009, 5, 866.

M. E. Fox, F. C. Szoka, J. M. J. Fréchet, Acc. Chem. Res. 2009, 42, 1141.

A. Orchel, K. Jelonek, J. Kasperczyk, Z. Dzierzewicz, Acta Pol. Pharm. 2010, 67, 710.

S. Sadhukhan, G.-F. Zhang, G. P. Tochtrop, ACS Chem. Biol. 2014, 9, 1706.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of Nanoparticle Weight on the Cellular Uptake and Drug Delivery Potential of PLGA Nanoparticles

. 2023 Aug 01 ; 8 (30) : 27146-27155. [epub] 20230719

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace