Small eye movements cannot be reliably measured by video-based P-CR eye-trackers
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
32206998
PubMed Central
PMC7575492
DOI
10.3758/s13428-020-01363-x
PII: 10.3758/s13428-020-01363-x
Knihovny.cz E-zdroje
- Klíčová slova
- Corneal reflection, Data quality, Eye-tracker, Microsaccade, Precision, Resolution, Saccade amplitude,
- MeSH
- audiovizuální záznam * MeSH
- lidé MeSH
- oční protézy * MeSH
- pohyby očí * MeSH
- sběr dat MeSH
- technologie sledování pohybu očí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
For evaluating whether an eye-tracker is suitable for measuring microsaccades, Poletti & Rucci (2016) propose that a measure called 'resolution' could be better than the more established root-mean-square of the sample-to-sample distances (RMS-S2S). Many open questions exist around the resolution measure, however. Resolution needs to be calculated using data from an artificial eye that can be turned in very small steps. Furthermore, resolution has an unclear and uninvestigated relationship to the RMS-S2S and STD (standard deviation) measures of precision (Holmqvist & Andersson, 2017, p. 159-190), and there is another metric by the same name (Clarke, Ditterich, Drüen, Schönfeld, and Steineke 2002), which instead quantifies the errors of amplitude measurements. In this paper, we present a mechanism, the Stepperbox, for rotating artificial eyes in arbitrary angles from 1' (arcmin) and upward. We then use the Stepperbox to find the minimum reliably detectable rotations in 11 video-based eye-trackers (VOGs) and the Dual Purkinje Imaging (DPI) tracker. We find that resolution correlates significantly with RMS-S2S and, to a lesser extent, with STD. In addition, we find that although most eye-trackers can detect some small rotations of an artificial eye, the rotations of amplitudes up to 2∘ are frequently erroneously measured by video-based eye-trackers. We show evidence that the corneal reflection (CR) feature of these eye-trackers is a major cause of erroneous measurements of small rotations of artificial eyes. Our data strengthen the existing body of evidence that video-based eye-trackers produce errors that may require that we reconsider some results from research on reading, microsaccades, and vergence, where the amplitude of small eye movements have been measured with past or current video-based eye-trackers. In contrast, the DPI reports correct rotation amplitudes down to 1'.
Department of Psychology Regensburg University Regensburg Germany
Faculty of Arts Masaryk University Brno Czech Republic
Institute of Psychology Nicolaus Copernicus University in Torun Toruń Poland
Zobrazit více v PubMed
Blignaut, P. (2014). Mapping the pupil-glint vector to gaze coordinates in a simple video-based eye tracker.
Blignaut, P., Holmqvist, K., Nyström, M., & Dewhurst, R. (2014). Improving the accuracy of video-based eye tracking in real time through post-calibration regression. In
Buswell, G. T. (1935).
Cerrolaza, J. J., Villanueva, A., & Cabeza, R. (2012). Study of polynomial mapping functions in video-oculography eye trackers.
Clarke, A. H., Ditterich, J., Drüen, K., Schönfeld, U., & Steineke, C. (2002). Using high frame rate cmos sensors for three-dimensional eye tracking. PubMed
Crane, H., D. & Steele, C. M. (1985). Generation-V dual-Purkinje-image eyetracker. PubMed
Ditchburn, R., & Ginsborg, B. (1952). Vision with a stabilized retinal image. PubMed
Dodge, R.. & Cline, T. S. (1901). The angle velocity of eye movements.
Drewes, J. (2014). Smaller is better: Drift in gaze measurements due to pupil dynamics. PubMed PMC
Drewes, J., Masson, G. S., & Montagnini, A. (2012). Shifts in reported gaze position due to changes in pupil size: Ground truth and compensation. In
Drewes, J., Montagnini, A., & Masson, G. S. (2011). Effects of pupil size on recorded gaze position: A live comparison of two eye tracking systems.
Engbert, R.. & Kliegl, R. (2003). Binocular coordination in microsaccades. In
Fang, Y., Gill, C., Poletti, M., & Rucci, M. (2018). Monocular microsaccades: Do they really occur? PubMed PMC
Gautier, J., Bedell, H. E., Siderov, J., & Waugh, S. J. (2016). Monocular microsaccades are visual-task related. PubMed
Holmqvist, K. (2015). Common predictors of accuracy, precision and data loss in 12 eye-trackers. Available at ResearchGate.
Holmqvist, K.. & Andersson, R. (2017).
Holmqvist, K., Nyström, M., & Mulvey, F. (2012). Eye tracker data quality: What it is and how to measure it. In
Hooge, I., Holmqvist, K., & Nyström, M. (2016). The pupil is faster than the corneal reflection (cr): Are video based pupil-cr eye trackers suitable for studying detailed dynamics of eye movements? PubMed
Hooge, I. T., Hessels, R. S., & Nyström, M. (2019). Do pupil-based binocular video eye trackers reliably measure vergence? PubMed
Hooge, I. T., Niehorster, D. C., Nyström, M., Andersson, R., & Hessels, R. S. (2018). Is human classification by experienced untrained observers a gold standard in fixation detection? PubMed PMC
Ko, H.-k., Snodderly, D. M., & Poletti, M. (2016). Eye movements between saccades: Measuring ocular drift and tremor. PubMed PMC
Kowler, E. (2011). Eye movements: The past 25 years. PubMed PMC
Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. PubMed
Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Hubel, D. H. (2009). Microsaccades: A neurophysiological analysis. PubMed
McCamy, M. B., Otero-Millan, J., Leigh, R. J., King, S. A., Schneider, R. M., Macknik, S. L., & Martinez-Conde, S. (2015). Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique. PubMed PMC
McConkie, G. (1981). Evaluating and reporting data quality in eye movement research.
Niehorster, D. C., Cornelissen, T. H., Holmqvist, K., Hooge, I. T., & Hessels, R. S. (2017). What to expect from your remote eye-tracker when participants are unrestrained. PubMed PMC
Orquin, J. L.. & Holmqvist, K. (2017). Threats to the validity of eye-movement research in psychology. PubMed
Otero-Millan, J., Castro, J. L. A., Macknik, S. L., and Martinez-Conde, S. (2014). Unsupervised clustering method to detect microsaccades. PubMed
Poletti, M.. & Rucci, M. (2016). A compact field guide to the study of microsaccades: challenges and functions. PubMed PMC
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. PubMed
Reingold, E. M. (2014). Eye tracking research and technology: Towards objective measurement of data quality. PubMed PMC
Wang, X., Holmqvist, K., ∧ Alexa, M. (2019). The recorded mean point of vergence is biased. PubMed PMC
Yarbus, A. L. (1967).
Zemblys, R., Niehorster, D. C., & Holmqvist, K. (2018a). gazenet: End-to-end eye-movement event detection with deep neural networks. PubMed
Zemblys, R., Niehorster, D. C., Komogortsev, O., & Holmqvist, K. (2018b). Using machine learning to detect events in eye-tracking data. PubMed
Eye tracking: empirical foundations for a minimal reporting guideline