Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 17-18702S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_013/0001821
Ministry of Education, Youth and Science
CZ.02.1.01/0.0/0.0/16_026/0008382
Ministry of Education, Youth and Science
LM2018110
Ministry of Education, Youth and Science
PubMed
32213885
PubMed Central
PMC7153506
DOI
10.3390/nano10030589
PII: nano10030589
Knihovny.cz E-zdroje
- Klíčová slova
- CVD, graphene, heterostructure, silicon,
- Publikační typ
- časopisecké články MeSH
The heterostructures of two-dimensional (2D) and three-dimensional (3D) materials represent one of the focal points of current nanotechnology research and development. From an application perspective, the possibility of a direct integration of active 2D layers with exceptional optoelectronic and mechanical properties into the existing semiconductor manufacturing processes is extremely appealing. However, for this purpose, 2D materials should ideally be grown directly on 3D substrates to avoid the transferring step, which induces damage and contamination of the 2D layer. Alternatively, when such an approach is difficult-as is the case of graphene on noncatalytic substrates such as Si-inverted structures can be created, where the 3D material is deposited onto the 2D substrate. In the present work, we investigated the possibility of using plasma-enhanced chemical vapor deposition (PECVD) to deposit amorphous hydrogenated Si (a-Si:H) onto graphene resting on a catalytic copper foil. The resulting stacks created at different Si deposition temperatures were investigated by the combination of Raman spectroscopy (to quantify the damage and to estimate the change in resistivity of graphene), temperature-dependent dark conductivity, and constant photocurrent measurements (to monitor the changes in the electronic properties of a-Si:H). The results indicate that the optimum is 100 C deposition temperature, where the graphene still retains most of its properties and the a-Si:H layer presents high-quality, device-ready characteristics.
Zobrazit více v PubMed
Song Y., Li X., Mackin C., Zhang X., Fang W., Palacios T., Zhu H., Kong J. Role of Interfacial Oxide in High-Efficiency Graphene–Silicon Schottky Barrier Solar Cells. Nano Lett. 2015;15:2104–2110. doi: 10.1021/nl505011f. PubMed DOI
Ye Y., Dai L. Graphene-based Schottky junction solar cells. J. Mater. Chem. 2012;22:24224–24229. doi: 10.1039/c2jm33809b. DOI
Sinha D., Lee J.U. Ideal Graphene/Silicon Schottky Junction Diodes. Nano Lett. 2014;14:4660–4664. doi: 10.1021/nl501735k. PubMed DOI
Lin Y., Li X., Xie D., Feng T., Chen Y., Song R., Tian H., Ren T., Zhong M., Wang K., et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci. 2013;6:108–115. doi: 10.1039/C2EE23538B. DOI
An X., Liu F., Jung Y.J., Kar S. Tunable Graphene–Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Lett. 2013;13:909–916. doi: 10.1021/nl303682j. PubMed DOI
Mohammed M., Li Z., Cui J., Chen T.P. Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res. Lett. 2012;7:302. doi: 10.1186/1556-276X-7-302. PubMed DOI PMC
An Y., Behnam A., Pop E., Bosman G., Ural A. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. J. Appl. Phys. 2015;118:114307. doi: 10.1063/1.4931142. DOI
Li X., Zhu M., Du M., Lv Z., Zhang L., Li Y., Yang Y., Yang T., Li X., Wang K., et al. High Detectivity Graphene-Silicon Heterojunction Photodetector. Small. 2016;12:595–601. doi: 10.1002/smll.201502336. PubMed DOI
Kumar R., Varandani D., Mehta B.R. Nanoscale interface formation and charge transfer in graphene/silicon Schottky junctions; KPFM and CAFM studies. Carbon. 2016;98:41–49. doi: 10.1016/j.carbon.2015.10.075. DOI
Di Bartolomeo A., Luongo G., Giubileo F., Funicello N., Niu G., Schroeder T., Lisker M., Lupina G. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Mater. 2017;4:025075. doi: 10.1088/2053-1583/aa6aa0. DOI
Hájková Z., Ledinský M., Vetushka A., Stuchlík J., Müller M., Fejfar A., Bouša M., Kalbáč M., Frank O. Photovoltaic characterization of graphene/silicon Schottky junctions from local and macroscopic perspectives. Chem. Phys. Lett. 2017;676:82–88. doi: 10.1016/j.cplett.2017.03.041. DOI
Rahova J., Sampathkumar K., Vetushka A., Ledinsky M., Hajkova Z., Fejfar A., Frank O. Local Photovoltaic Properties of Graphene–Silicon Heterojunctions. Phys. Status Solidi B. 2018;255:1800305. doi: 10.1002/pssb.201800305. DOI
Rehman M.A., Roy S.B., Akhtar I., Bhopal M.F., Choi W., Nazir G., Khan M.F., Kumar S., Eom J., Chun S.H., et al. Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon. 2019;148:187–195. doi: 10.1016/j.carbon.2019.03.079. DOI
Suhail A., Pan G., Jenkins D., Islam K. Improved efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon. 2018;129:520–526. doi: 10.1016/j.carbon.2017.12.053. DOI
Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Li X., Wu D. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010;22:2743–2748. doi: 10.1002/adma.200904383. PubMed DOI
Fan G., Zhu H., Wang K., Wei J., Li X., Shu Q., Guo N., Wu D. Graphene/Silicon Nanowire Schottky Junction for Enhanced Light Harvesting. ACS Appl. Mater. Int. 2011;3:721–725. doi: 10.1021/am1010354. PubMed DOI
Kang J., Shin D., Bae S., Hong B.H. Graphene transfer: Key for applications. Nanoscale. 2012;4:5527–5537. doi: 10.1039/c2nr31317k. PubMed DOI
Arezki H., Boutchich M., Alamarguy D., Madouri A., Alvarez J., Cabarrocas P.R.i., Kleider J.P., Yao F., Hee Lee Y. Electronic properties of embedded graphene: Doped amorphous silicon/CVD graphene heterostructures. J. Phys. Condens. Matter. 2016;28:404001. doi: 10.1088/0953-8984/28/40/404001. PubMed DOI
Lupina G., Strobel C., Dabrowski J., Lippert G., Kitzmann J., Krause H.M., Wenger C., Lukosius M., Wolff A., Albert M., et al. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene. Appl. Phys. Lett. 2016;108:193105. doi: 10.1063/1.4948978. DOI
Kalbac M., Frank O., Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI
Frank O., Vejpravova J., Holy V., Kavan L., Kalbac M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon. 2014;68:440–451. doi: 10.1016/j.carbon.2013.11.020. DOI
Malard L.M., Pimenta M.A., Dresselhaus G., Dresselhaus M.S. Raman spectroscopy in graphene. Phys. Rep. 2009;473:51–87. doi: 10.1016/j.physrep.2009.02.003. DOI
Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013;8:235–246. doi: 10.1038/nnano.2013.46. PubMed DOI
Cancado L.G., Jorio A., Ferreira E.H.M., Stavale F., Achete C.A., Capaz R.B., Moutinho M.V.O., Lombardo A., Kulmala T.S., Ferrari A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI
Lucchese M.M., Stavale F., Ferreira E.H.M., Vilani C., Moutinho M.V.O., Capaz R.B., Achete C.A., Jorio A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon. 2010;48:1592–1597. doi: 10.1016/j.carbon.2009.12.057. DOI
Tuinstra F., Koenig J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970;53:1126–1130. doi: 10.1063/1.1674108. DOI
Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI
Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012;12:3925–3930. doi: 10.1021/nl300901a. PubMed DOI
Plšek J., Kovaříček P., Valeš V., Kalbáč M. Tuning the Reactivity of Graphene by Surface Phase Orientation. Chem. Eur. J. 2017;23:1839–1845. doi: 10.1002/chem.201604311. PubMed DOI
Girit C., Meyer J.C., Erni R., Rossell M.D., Kisielowski C., Yang L., Park C.H., Crommie M.F., Cohen M.L., Louie S.G., et al. Graphene at the Edge: Stability and Dynamics. Science. 2009;323:1705–1708. doi: 10.1126/science.1166999. PubMed DOI
Bissett M.A., Izumida W., Saito R., Ago H. Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene. ACS Nano. 2012;6:10229–10238. doi: 10.1021/nn304032f. PubMed DOI
Vlassiouk I., Smirnov S., Ivanov I., Fulvio P.F., Dai S., Meyer H., Chi M.F., Hensley D., Datskos P., Lavrik N.V. Electrical and thermal conductivity of low temperature CVD graphene: The effect of disorder. Nanotechnology. 2011;22 doi: 10.1088/0957-4484/22/27/275716. PubMed DOI
Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Y., Butenko A.V., Wolfson L., Richter V., Naveh D., Sharoni A., et al. Raman scattering and electrical resistance of highly disordered graphene. Phys. Rev. B. 2015;91 doi: 10.1103/PhysRevB.91.045414. DOI
Lee J.E., Ahn G., Shim J., Lee Y.S., Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commu. 2012;3:1024. doi: 10.1038/ncomms2022. PubMed DOI
Mueller N.S., Heeg S., Peña-Alvarez M., Kusch P., Wasserroth S., Clark N., Schedin F., Parthenios J., Papagelis K., Galiotis C., et al. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Mater. 2018;5:015016. doi: 10.1088/2053-1583/aa90b3. DOI
Wronski C.R. Amorphous silicon technology: Coming of age. Sol. Energy Mater. Sol. Cells. 1996;41–42:427–439. doi: 10.1016/0927-0248(95)00142-5. DOI
Vaněček M., Kočka J., Stuchlík J., Kožíšek Z., Štika O., Tříska A. Density of the gap states in undoped and doped glow discharge a-Si:H. Sol. Energy Mater. 1983;8:411–423. doi: 10.1016/0165-1633(83)90006-0. DOI
Wyrsch N., Finger F., McMahon T.J., Vanecek M. How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H. J. Non-Cryst. Solids. 1991;137–138:347–350. doi: 10.1016/S0022-3093(05)80127-9. DOI
Staebler D.L., Wronski C.R. Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 1977;31:292–294. doi: 10.1063/1.89674. DOI
De Wolf S., Holovsky J., Moon S.J., Löper P., Niesen B., Ledinsky M., Haug F.J., Yum J.H., Ballif C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014;5:1035–1039. doi: 10.1021/jz500279b. PubMed DOI
Ledinsky M., Schönfeldová T., Holovský J., Aydin E., Hájková Z., Landová L., Neyková N., Fejfar A., De Wolf S. Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. J. Phys. Chem. Lett. 2019;10:1368–1373. doi: 10.1021/acs.jpclett.9b00138. PubMed DOI