Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene

. 2020 Mar 24 ; 10 (3) : . [epub] 20200324

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32213885

Grantová podpora
GACR 17-18702S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_013/0001821 Ministry of Education, Youth and Science
CZ.02.1.01/0.0/0.0/16_026/0008382 Ministry of Education, Youth and Science
LM2018110 Ministry of Education, Youth and Science

The heterostructures of two-dimensional (2D) and three-dimensional (3D) materials represent one of the focal points of current nanotechnology research and development. From an application perspective, the possibility of a direct integration of active 2D layers with exceptional optoelectronic and mechanical properties into the existing semiconductor manufacturing processes is extremely appealing. However, for this purpose, 2D materials should ideally be grown directly on 3D substrates to avoid the transferring step, which induces damage and contamination of the 2D layer. Alternatively, when such an approach is difficult-as is the case of graphene on noncatalytic substrates such as Si-inverted structures can be created, where the 3D material is deposited onto the 2D substrate. In the present work, we investigated the possibility of using plasma-enhanced chemical vapor deposition (PECVD) to deposit amorphous hydrogenated Si (a-Si:H) onto graphene resting on a catalytic copper foil. The resulting stacks created at different Si deposition temperatures were investigated by the combination of Raman spectroscopy (to quantify the damage and to estimate the change in resistivity of graphene), temperature-dependent dark conductivity, and constant photocurrent measurements (to monitor the changes in the electronic properties of a-Si:H). The results indicate that the optimum is 100 C deposition temperature, where the graphene still retains most of its properties and the a-Si:H layer presents high-quality, device-ready characteristics.

Zobrazit více v PubMed

Song Y., Li X., Mackin C., Zhang X., Fang W., Palacios T., Zhu H., Kong J. Role of Interfacial Oxide in High-Efficiency Graphene–Silicon Schottky Barrier Solar Cells. Nano Lett. 2015;15:2104–2110. doi: 10.1021/nl505011f. PubMed DOI

Ye Y., Dai L. Graphene-based Schottky junction solar cells. J. Mater. Chem. 2012;22:24224–24229. doi: 10.1039/c2jm33809b. DOI

Sinha D., Lee J.U. Ideal Graphene/Silicon Schottky Junction Diodes. Nano Lett. 2014;14:4660–4664. doi: 10.1021/nl501735k. PubMed DOI

Lin Y., Li X., Xie D., Feng T., Chen Y., Song R., Tian H., Ren T., Zhong M., Wang K., et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci. 2013;6:108–115. doi: 10.1039/C2EE23538B. DOI

An X., Liu F., Jung Y.J., Kar S. Tunable Graphene–Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Lett. 2013;13:909–916. doi: 10.1021/nl303682j. PubMed DOI

Mohammed M., Li Z., Cui J., Chen T.P. Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res. Lett. 2012;7:302. doi: 10.1186/1556-276X-7-302. PubMed DOI PMC

An Y., Behnam A., Pop E., Bosman G., Ural A. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. J. Appl. Phys. 2015;118:114307. doi: 10.1063/1.4931142. DOI

Li X., Zhu M., Du M., Lv Z., Zhang L., Li Y., Yang Y., Yang T., Li X., Wang K., et al. High Detectivity Graphene-Silicon Heterojunction Photodetector. Small. 2016;12:595–601. doi: 10.1002/smll.201502336. PubMed DOI

Kumar R., Varandani D., Mehta B.R. Nanoscale interface formation and charge transfer in graphene/silicon Schottky junctions; KPFM and CAFM studies. Carbon. 2016;98:41–49. doi: 10.1016/j.carbon.2015.10.075. DOI

Di Bartolomeo A., Luongo G., Giubileo F., Funicello N., Niu G., Schroeder T., Lisker M., Lupina G. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Mater. 2017;4:025075. doi: 10.1088/2053-1583/aa6aa0. DOI

Hájková Z., Ledinský M., Vetushka A., Stuchlík J., Müller M., Fejfar A., Bouša M., Kalbáč M., Frank O. Photovoltaic characterization of graphene/silicon Schottky junctions from local and macroscopic perspectives. Chem. Phys. Lett. 2017;676:82–88. doi: 10.1016/j.cplett.2017.03.041. DOI

Rahova J., Sampathkumar K., Vetushka A., Ledinsky M., Hajkova Z., Fejfar A., Frank O. Local Photovoltaic Properties of Graphene–Silicon Heterojunctions. Phys. Status Solidi B. 2018;255:1800305. doi: 10.1002/pssb.201800305. DOI

Rehman M.A., Roy S.B., Akhtar I., Bhopal M.F., Choi W., Nazir G., Khan M.F., Kumar S., Eom J., Chun S.H., et al. Thickness-dependent efficiency of directly grown graphene based solar cells. Carbon. 2019;148:187–195. doi: 10.1016/j.carbon.2019.03.079. DOI

Suhail A., Pan G., Jenkins D., Islam K. Improved efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon. 2018;129:520–526. doi: 10.1016/j.carbon.2017.12.053. DOI

Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Li X., Wu D. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010;22:2743–2748. doi: 10.1002/adma.200904383. PubMed DOI

Fan G., Zhu H., Wang K., Wei J., Li X., Shu Q., Guo N., Wu D. Graphene/Silicon Nanowire Schottky Junction for Enhanced Light Harvesting. ACS Appl. Mater. Int. 2011;3:721–725. doi: 10.1021/am1010354. PubMed DOI

Kang J., Shin D., Bae S., Hong B.H. Graphene transfer: Key for applications. Nanoscale. 2012;4:5527–5537. doi: 10.1039/c2nr31317k. PubMed DOI

Arezki H., Boutchich M., Alamarguy D., Madouri A., Alvarez J., Cabarrocas P.R.i., Kleider J.P., Yao F., Hee Lee Y. Electronic properties of embedded graphene: Doped amorphous silicon/CVD graphene heterostructures. J. Phys. Condens. Matter. 2016;28:404001. doi: 10.1088/0953-8984/28/40/404001. PubMed DOI

Lupina G., Strobel C., Dabrowski J., Lippert G., Kitzmann J., Krause H.M., Wenger C., Lukosius M., Wolff A., Albert M., et al. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene. Appl. Phys. Lett. 2016;108:193105. doi: 10.1063/1.4948978. DOI

Kalbac M., Frank O., Kavan L. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI

Frank O., Vejpravova J., Holy V., Kavan L., Kalbac M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon. 2014;68:440–451. doi: 10.1016/j.carbon.2013.11.020. DOI

Malard L.M., Pimenta M.A., Dresselhaus G., Dresselhaus M.S. Raman spectroscopy in graphene. Phys. Rep. 2009;473:51–87. doi: 10.1016/j.physrep.2009.02.003. DOI

Ferrari A.C., Basko D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013;8:235–246. doi: 10.1038/nnano.2013.46. PubMed DOI

Cancado L.G., Jorio A., Ferreira E.H.M., Stavale F., Achete C.A., Capaz R.B., Moutinho M.V.O., Lombardo A., Kulmala T.S., Ferrari A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI

Lucchese M.M., Stavale F., Ferreira E.H.M., Vilani C., Moutinho M.V.O., Capaz R.B., Achete C.A., Jorio A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon. 2010;48:1592–1597. doi: 10.1016/j.carbon.2009.12.057. DOI

Tuinstra F., Koenig J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970;53:1126–1130. doi: 10.1063/1.1674108. DOI

Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI

Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012;12:3925–3930. doi: 10.1021/nl300901a. PubMed DOI

Plšek J., Kovaříček P., Valeš V., Kalbáč M. Tuning the Reactivity of Graphene by Surface Phase Orientation. Chem. Eur. J. 2017;23:1839–1845. doi: 10.1002/chem.201604311. PubMed DOI

Girit C., Meyer J.C., Erni R., Rossell M.D., Kisielowski C., Yang L., Park C.H., Crommie M.F., Cohen M.L., Louie S.G., et al. Graphene at the Edge: Stability and Dynamics. Science. 2009;323:1705–1708. doi: 10.1126/science.1166999. PubMed DOI

Bissett M.A., Izumida W., Saito R., Ago H. Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene. ACS Nano. 2012;6:10229–10238. doi: 10.1021/nn304032f. PubMed DOI

Vlassiouk I., Smirnov S., Ivanov I., Fulvio P.F., Dai S., Meyer H., Chi M.F., Hensley D., Datskos P., Lavrik N.V. Electrical and thermal conductivity of low temperature CVD graphene: The effect of disorder. Nanotechnology. 2011;22 doi: 10.1088/0957-4484/22/27/275716. PubMed DOI

Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Y., Butenko A.V., Wolfson L., Richter V., Naveh D., Sharoni A., et al. Raman scattering and electrical resistance of highly disordered graphene. Phys. Rev. B. 2015;91 doi: 10.1103/PhysRevB.91.045414. DOI

Lee J.E., Ahn G., Shim J., Lee Y.S., Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commu. 2012;3:1024. doi: 10.1038/ncomms2022. PubMed DOI

Mueller N.S., Heeg S., Peña-Alvarez M., Kusch P., Wasserroth S., Clark N., Schedin F., Parthenios J., Papagelis K., Galiotis C., et al. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Mater. 2018;5:015016. doi: 10.1088/2053-1583/aa90b3. DOI

Wronski C.R. Amorphous silicon technology: Coming of age. Sol. Energy Mater. Sol. Cells. 1996;41–42:427–439. doi: 10.1016/0927-0248(95)00142-5. DOI

Vaněček M., Kočka J., Stuchlík J., Kožíšek Z., Štika O., Tříska A. Density of the gap states in undoped and doped glow discharge a-Si:H. Sol. Energy Mater. 1983;8:411–423. doi: 10.1016/0165-1633(83)90006-0. DOI

Wyrsch N., Finger F., McMahon T.J., Vanecek M. How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H. J. Non-Cryst. Solids. 1991;137–138:347–350. doi: 10.1016/S0022-3093(05)80127-9. DOI

Staebler D.L., Wronski C.R. Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 1977;31:292–294. doi: 10.1063/1.89674. DOI

De Wolf S., Holovsky J., Moon S.J., Löper P., Niesen B., Ledinsky M., Haug F.J., Yum J.H., Ballif C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014;5:1035–1039. doi: 10.1021/jz500279b. PubMed DOI

Ledinsky M., Schönfeldová T., Holovský J., Aydin E., Hájková Z., Landová L., Neyková N., Fejfar A., De Wolf S. Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. J. Phys. Chem. Lett. 2019;10:1368–1373. doi: 10.1021/acs.jpclett.9b00138. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...