Role of Sn as a Process Control Agent on Mechanical Alloying Behavior of Nanocrystalline Titanium Based Powders
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2016/23/N/ST8/03809
Narodowym Centrum Nauki
PubMed
32370206
PubMed Central
PMC7254251
DOI
10.3390/ma13092110
PII: ma13092110
Knihovny.cz E-resources
- Keywords
- Rietveld method, Sn, mechanical alloying, nanocrystalline Ti based alloy, process control agent,
- Publication type
- Journal Article MeSH
In this study, the effects of Sn as a process control agent (PCA) on the final powder sizes, morphology, homogenization and alloying process of a new titanium alloy were investigated. Two kinds of powders, Ti10Ta8Mo and Ti10Ta8Mo3Sn (wt %), were prepared using a mechanical alloying process. For the Ti10Ta8Mo3Sn (wt %) alloy, the Sn element was used as PCA to enhance the milling process in the planetary ball mill. The milling process of both compositions was carried out with 200 rpm for 10, 15, 20, 40, 60, 80 and 100 h. The results confirmed that using Sn as a process control agent can result in a relatively good size distribution and better yield performance compared to samples without Sn addition. The phase analysis using X-ray diffraction proved the formation of the α nanocrystalline phase and the partial phase transformation from α to nanocrystalline β phases of both alloy compositions. The Scaning Electron Micoscope- Backscattered Electrons SEM-BSE results confirmed that the use of Sn as the PCA can provide a better homogenization of samples prepared by at least 60 h of ball milling. Furthermore, the presence of Sn yielded the most uniform, spheroidal and finest particles after the longest milling time.
See more in PubMed
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Soni P.R. Mechanical Alloying: Fundamentals and Applications. Cambridge International Science Publishing; Cambridge, UK: 2001.
Dercz G., Matuła I., Zubko M., Dercz J. Phase composition and microstructure of new Ti-Ta-Nb-Zr biomedical alloys prepared by mechanical alloying method. Powder Diffr. 2017;32:S186–S192. doi: 10.1017/S0885715617000045. DOI
Suryanarayana C., Ivanov E., Boldyrev V. The science and technology of mechanical alloying. Mater. Sci. Eng. A. 2001;304:151–158. doi: 10.1016/S0921-5093(00)01465-9. DOI
El-Eskandarany M.S. Mechanical Alloying for Fabrication of Advanced Engineering Materials. William Andrew Publishing; New York, NY, USA: 2001.
Giordana M.F., Esquivel M.R., Zelaya E. A detailed study of phase evolution in Cu-16 at. %Al and Cu-30 at. %Al alloys under different types of mechanical alloying processes. Adv. Powder Technol. 2015;26:470–477. doi: 10.1016/j.apt.2014.12.005. DOI
Zadra M.K., Srl Viale Dante S. Mechanical alloying of titanium. Mater. Sci. Eng. A. 2013;583:105–113. doi: 10.1016/j.msea.2013.06.064. DOI
Chawla V., Prakash S., Sidhu B.S. State of the Art: Applications of Mechanically Alloyed Nanomaterials—A Review. Mater. Manuf. Process. 2007;22:469–473. doi: 10.1080/10426910701235900. DOI
Çınar S., Tevis I.D., Chen J., Thuo M. Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering. Sci. Rep. 2016;6:21864. doi: 10.1038/srep21864. PubMed DOI PMC
Hosseini-Gourajoubi F., Pourabdoli M., Uner D., Raygan S. Effect of process control agents on synthesizing nano-structured 2Mg-9N-Y catalyst by mechanical milling and its catalytic effect on desorption capacity of MgH2. Adv. Powder Technol. 2015;26:448–453. doi: 10.1016/j.apt.2014.11.017. DOI
Dercz G., Matuła I., Zubko M., Liberska A. Structure characterization of biomedical Ti-Mo-Sn alloy prepared by mechanical alloying method. Acta Phys. Pol. A. 2016;130:1029–1032. doi: 10.12693/APhysPolA.130.1029. DOI
Matuła I., Dercz G., Zubko M., Prusik K., Pajak L. Influence of high energy milling time on the Ti-50Ta biomedical alloy structure. Acta Phys. Pol. A. 2016;130:1033–1036. doi: 10.12693/APhysPolA.130.1033. DOI
Nouri A., Hodgson P.D., Wen C. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy. Mater. Sci. Eng. C. 2011;31:921–928. doi: 10.1016/j.msec.2011.02.011. DOI
Nazari K.A., Nouri A., Hilditch T. Effects of milling time on powder packing characteristics and compressive mechanical properties of sintered Ti-10Nb-3Mo alloy. Mater. Lett. 2015;140:55–58. doi: 10.1016/j.matlet.2014.10.143. DOI
Aguilar C., Guzman P., Lascano S., Parra C., Bejar L., Medina A., Guzman D. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying. J. Alloys Compd. 2016;670:346–355. doi: 10.1016/j.jallcom.2015.12.173. DOI
Dercz G., Prusik K., Pajak L., Goryczka T., Formanek B. X-ray studies on NiAl-Cr3C2-Al2O3 composite powder with nanocrystalline NiAl phase. J. Alloys Compd. 2006;423:112–115. doi: 10.1016/j.jallcom.2005.12.044. DOI
Dercz G., Formanek B., Prusik K., Pająk L. Microstructure of Ni(Cr)-TiC-Cr3C2-Cr7C3 composite powder. J. Mater. Process. Technol. 2005;162–163:15–19. doi: 10.1016/j.jmatprotec.2005.02.004. DOI
Shah M., Fawcett D., Sharma S., Tripathy S., Poinern G. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials. 2015;8:7278–7308. doi: 10.3390/ma8115377. PubMed DOI PMC
Hsu H.C., Wu S.C., Hsu S.K., Chang T.Y., Ho W.F. Effect of ball milling on properties of porous Ti-7.5Mo alloy for biomedical applications. J. Alloys Compd. 2014;582:793–801. doi: 10.1016/j.jallcom.2013.08.147. DOI
Canakci A., Varol T., Ozsahin S. Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: Measurement and modeling. Measurement. 2013;46:1818–1827. doi: 10.1016/j.measurement.2013.02.005. DOI
Zhang Y.F., Lu L., Yap S.M. Prediction of the amount of PCA for mechanical milling. J. Mater. Process. Technol. 1999;89–90:260–265. doi: 10.1016/S0924-0136(99)00042-4. DOI
Kurama H., Erkuş Ş., Gaşan H. The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill. Ceram. Int. 2017;43:S391–S396. doi: 10.1016/j.ceramint.2017.05.274. DOI
Juárez R., Suñol J.J., Berlanga R., Bonastre J., Escoda L. The effects of process control agents on mechanical alloying behavior of a Fe–Zr based alloy. J. Alloys Compd. 2007;434–435:472–476. doi: 10.1016/j.jallcom.2006.08.108. DOI
Lu L., Zhang Y.F. Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying. J. Alloys Compd. 1999;290:279–283. doi: 10.1016/S0925-8388(99)00221-2. DOI
Palacios-Lazcano A., Cabañ As-Moreno J.G., Cruz-Gandarilla F. On the formation of a mixed carbide (MgNi3Cx) during production of nanocrystalline Mg2Ni by mechanical alloying. Scr. Mater. 2005;52:571–575. doi: 10.1016/j.scriptamat.2004.11.036. DOI
Niu X.P., Froyen L., Delaey L., Peytour C. Hydride formation in mechanically alloyed AlZr and AlFeZr. Scr. Metall. Mater. 1994;30:13–18. doi: 10.1016/0956-716X(94)90350-6. DOI
Lu L., Lai M.O., Zhang S. Preparation of Al-Based Composite Using Mechanical Alloying. Key Eng. Mater. 1995;104–107:111–124. doi: 10.4028/www.scientific.net/KEM.104-107.111. DOI
Fray D.J. Novel methods for the production of titanium. Int. Mater. Rev. 2008;53:317–325. doi: 10.1179/174328008X324594. DOI
Nestler D., Siebeck S., Podlesak H., Wagner S., Hockauf M., Wielage B. Integrated Systems, Design and Technology 2010. Springer Berlin Heidelberg; Berlin/Heidelberg, Germany: 2011. Powder Metallurgy of Particle-Reinforced Aluminium Matrix Composites (AMC) by Means of High-Energy Ball Milling; pp. 93–107.
Zhang Y.S., Wang X., Zhang W., Huo W.T., Hu J.J., Zhang L.C. Elevated tensile properties of Ti-O alloy with a novel core-shell structure. Mater. Sci. Eng. A. 2017;696:360–365. doi: 10.1016/j.msea.2017.04.088. DOI
Zhang Y.S., Zhang W., Huo W.T., Hu J.J., Zhang L.C. Microstructure, mechanical and wear properties of coreeshell structural particle reinforced Ti-O alloys. Vacuum. 2017;139:44–50. doi: 10.1016/j.vacuum.2017.02.006. DOI
Adamek G. Mechanical Alloying of Ti-20Ta-20Nb-(10÷20)Mg Alloys. Acta Phys. Pol. A. 2014;126:871–874. doi: 10.12693/APhysPolA.126.871. DOI
Khorev A.I. Alloying titanium alloys with rare-earth metals. Russ. Eng. Res. 2011;31:1087–1094. doi: 10.3103/S1068798X11110104. DOI
Kawahara H. Cytotoxicity of Implantable Metals and Alloys. Bull. Japan Inst. Met. 1992;31:1033–1039. doi: 10.2320/materia1962.31.1033. DOI
Biesiekierski A., Wang J., Abdel-Hady Gepreel M., Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–1669. doi: 10.1016/j.actbio.2012.01.018. PubMed DOI
Li Y., Yang C., Zhao H., Qu S., Li X., Li Y. New developments of ti-based alloys for biomedical applications. Materials. 2014;7:1709–1800. doi: 10.3390/ma7031709. PubMed DOI PMC
Niinomi M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A. 2002;33:477–486. doi: 10.1007/s11661-002-0109-2. DOI
Hsu H.C., Wu S.C., Hong Y.S., Ho W.F. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys. J. Alloys Compd. 2009;479:390–394. doi: 10.1016/j.jallcom.2008.12.064. DOI
Kim H.Y., Fukushima T., Buenconsejo P.J.S., Nam T.H., Miyazaki S. Martensitic transformation and shape memory properties of Ti-Ta-Sn high temperature shape memory alloys. Mater. Sci. Eng. A. 2011;528:7238–7246. doi: 10.1016/j.msea.2011.06.021. DOI
Liu H.W., Paul Bishop D., Plucknett K.P. A comparison of Ti-Ni and Ti-Sn binary alloys processed using powder metallurgy. Mater. Sci. Eng. A. 2015;644:392–404. doi: 10.1016/j.msea.2015.07.085. DOI
Massalski T.B., Okamoto H., Subramanian P.R., Massalski B., Thaddeus L. In: Binary Alloy Phase Diagrams. 2nd ed. Massalski T.B., Okamoto H., Subramanian P.R., Massalski B., Thaddeus L., editors. ASM International; Almere, The Netherlands: 1990.
Nouri A., Hodgson P.D., Wen C.E. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 2010;6:1630–1639. doi: 10.1016/j.actbio.2009.10.005. PubMed DOI
Nouri A., Chen X., Li Y., Yamada Y., Hodgson P.D., Wen C. Synthesis of Ti-Sn-Nb alloy by powder metallurgy. Mater. Sci. Eng. A. 2008;485:562–570. doi: 10.1016/j.msea.2007.10.010. DOI
Omran A.M., Woo K.D., Kim D.K., Kim S.W., Moon M.S., Barakat N.A., Zhang D.L. Effect of Nb and Sn on the Transformation of α-Ti to β-Ti in Ti-35 Nb-2.5 Sn Nanostructure Alloys using Mechanical Alloying. Met. Mater. Int. 2008;14:321–325. doi: 10.3365/met.mat.2008.06.321. DOI
Brown S.A., Lemons J.E. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. Med. Appl. Titan. Its Alloy. Mater. Biol. Issues. 1996;12
Tong Y.X., Guo B., Zheng Y.F., Chung C.Y., Ma L.W. Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys. J. Mater. Eng. Perform. 2011;20:762–766. doi: 10.1007/s11665-010-9817-8. DOI
Takahashi E., Sakurai T., Watanabe S., Masahashi N., Hanada S. Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys. Mater. Trans. 2002;43:2978–2983. doi: 10.2320/matertrans.43.2978. DOI
Hao Y.L., Li S.J., Sun S.Y., Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater. Sci. Eng. A. 2006;441:112–118. doi: 10.1016/j.msea.2006.09.051. DOI
Hussein A.H., Gepreel M.A.H., Gouda M.K., Hefnawy A.M., Kandil S.H. Biocompatibility of new Ti-Nb-Ta base alloys. Mater. Sci. Eng. C. 2016;61:574–578. doi: 10.1016/j.msec.2015.12.071. PubMed DOI
Delvat E., Gordin D.M., Gloriant T., Duval J.L., Nagel M.D. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys. J. Mech. Behav. Biomed. Mater. 2008;1:345–351. doi: 10.1016/j.jmbbm.2008.01.006. PubMed DOI
Toraya H. Whole-powder-pattern fitting without reference to a structural model: Application to X-ray powder diffraction data. J. Appl. Crystallogr. 1996;19:440–447. doi: 10.1107/S0021889886088982. DOI
Wiles D.B., Young R.A. A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst. 1981;14:149–151. doi: 10.1107/S0021889881008996. DOI
Rietveld H.M. A Profile Refinement Method for Nuclear and Magnetic Structure. J. Appl. Cryst. 1969;3:65–69. doi: 10.1107/S0021889869006558. DOI
Young R.A. The Rietveld method. Oxford University Press; Oxford, UK: 1993.
Hill R.J., Howard C.J. IUCr Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Crystallogr. 1987;20:467–474. doi: 10.1107/S0021889887086199. DOI
Dercz G., Oleszak D., Prusik K., Pająk L. Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phases. Rev. Adv. Mater. Sci. 2008;18:764–768.
Williamson G., Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6. DOI
Shimizu Y., Yamamoto A., Mukai T., Shirai Y., Kano M., Kudo T., Kanetaka H., Kikuchi M. Medical application of magnesium and its alloys as degradable biomaterials. Interface Oral Heal. Sci. 2009:318–320.
Witte F., Kaese V., Haferkamp H., Switzer E., Meyer-Lindenberg A., Wirth C.J., Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–3563. doi: 10.1016/j.biomaterials.2004.09.049. PubMed DOI
Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006;27:1728–1734. doi: 10.1016/j.biomaterials.2005.10.003. PubMed DOI
Persaud-Sharma D., McGoron A. Biodegradable Magnesium Alloys: A Review of Material Development and Applications. J. Biomim. Biomater. Tissue Eng. 2012;12:25–39. doi: 10.4028/www.scientific.net/JBBTE.12.25. PubMed DOI PMC
Dercz G., Matuła I., Zubko M., Kazek-Kęsik A., Maszybrocka J., Simka W., Dercz J., Świec P., Jendrzejewska I. Synthesis of porous Ti–50Ta alloy by powder metallurgy. Mater. Charact. 2018;142:124–136. doi: 10.1016/j.matchar.2018.05.033. DOI
Salvo C., Aguilar C., Cardoso-Gil R., Medina A., Bejar L., Mangalaraja R.V. Study on the microstructural evolution of Ti-Nb based alloy obtained by high-energy ball milling. J. Alloys Compd. 2017;720:254–263. doi: 10.1016/j.jallcom.2017.05.262. DOI
Dercz G., Matuła I., Maszybrocka J. Properties of porous Ti-26Nb-6Mo-1.5Sn alloy produced via powder metallurgy for biomedical application. Phys MET Metallogr. 2019;120:1384–1391. doi: 10.1134/S0031918X19130040. DOI
Dercz G., Pająk L., Formanek B. Dispersion analysis of NiAl-TiC-Al2O3 composite powder ground in a high-energy attritorial mill. J. Mater. Process. Technol. 2006;175:334–337. doi: 10.1016/j.jmatprotec.2005.04.060. DOI
Yu H., Sun Y., Hu L., Zhou H., Wan Z. Microstructural evolution of AZ61-10 at.%Ti composite powders during mechanical milling. Mater. Design. 2016;104:265–275. doi: 10.1016/j.matdes.2016.05.014. DOI
Uvarov V., Popov I. Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 2007;58:883–891. doi: 10.1016/j.matchar.2006.09.002. DOI
Huang J., Xing H., Sun J. Structural stability and generalized stacking fault energies in β Ti-Nb alloys: Relation to dislocation properties. Scr. Mater. 2012;66:682–685. doi: 10.1016/j.scriptamat.2012.01.023. DOI
Liu S., Li Z., Wang C. Point defects and mechanical behavior of titanium alloys and intermetallic compounds. J. Phys. Conf. Ser. 2006;29:220–227.