Targeting defective sphingosine kinase 1 in Niemann-Pick type C disease with an activator mitigates cholesterol accumulation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
L40 NS108774
NINDS NIH HHS - United States
R37 CA239532
NCI NIH HHS - United States
P30 CA016059
NCI NIH HHS - United States
K22 CA187314
NCI NIH HHS - United States
K99 HD096117
NICHD NIH HHS - United States
R00 HD096117
NICHD NIH HHS - United States
R01 GM043880
NIGMS NIH HHS - United States
PubMed
32385114
PubMed Central
PMC7335787
DOI
10.1074/jbc.ra120.012659
PII: S0021-9258(17)50333-6
Knihovny.cz E-zdroje
- Klíčová slova
- NPC1, Niemann–Pick type C, cholesterol, genetic disorder, lipid metabolism, lysosomal storage disease, neurodegeneration, sphingolipid, sphingolipids, sphingosine kinase, sphingosine kinase (SphK), sphingosine-1-phosphate (S1P),
- MeSH
- buněčné linie MeSH
- cholesterol metabolismus MeSH
- endozomy metabolismus MeSH
- estery cholesterolu metabolismus MeSH
- fibroblasty MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- membránové glykoproteiny metabolismus MeSH
- myši MeSH
- Niemannova-Pickova nemoc typu C metabolismus patofyziologie MeSH
- primární buněčná kultura MeSH
- protein NPC1 genetika metabolismus MeSH
- sfingolipidy metabolismus MeSH
- sfingosin genetika metabolismus MeSH
- transport proteinů MeSH
- transportní proteiny metabolismus MeSH
- vezikulární transportní proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cholesterol MeSH
- estery cholesterolu MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem MeSH
- intracelulární signální peptidy a proteiny MeSH
- membránové glykoproteiny MeSH
- NPC2 protein, human MeSH Prohlížeč
- protein NPC1 MeSH
- sfingolipidy MeSH
- sfingosin MeSH
- sphingosine kinase MeSH Prohlížeč
- transportní proteiny MeSH
- vezikulární transportní proteiny MeSH
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder arising from mutations in the cholesterol-trafficking protein NPC1 (95%) or NPC2 (5%). These mutations result in accumulation of low-density lipoprotein-derived cholesterol in late endosomes/lysosomes, disruption of endocytic trafficking, and stalled autophagic flux. Additionally, NPC disease results in sphingolipid accumulation, yet it is unique among the sphingolipidoses because of the absence of mutations in the enzymes responsible for sphingolipid degradation. In this work, we examined the cause for sphingosine and sphingolipid accumulation in multiple cellular models of NPC disease and observed that the activity of sphingosine kinase 1 (SphK1), one of the two isoenzymes that phosphorylate sphingoid bases, was markedly reduced in both NPC1 mutant and NPC1 knockout cells. Conversely, SphK1 inhibition with the isotype-specific inhibitor SK1-I in WT cells induced accumulation of cholesterol and reduced cholesterol esterification. Of note, a novel SphK1 activator (SK1-A) that we have characterized decreased sphingoid base and complex sphingolipid accumulation and ameliorated autophagic defects in both NPC1 mutant and NPC1 knockout cells. Remarkably, in these cells, SK1-A also reduced cholesterol accumulation and increased cholesterol ester formation. Our results indicate that a SphK1 activator rescues aberrant cholesterol and sphingolipid storage and trafficking in NPC1 mutant cells. These observations highlight a previously unknown link between SphK1 activity, NPC1, and cholesterol trafficking and metabolism.
Zobrazit více v PubMed
Carstea E. D., Morris J. A., Coleman K. G., Loftus S. K., Zhang D., Cummings C., Gu J., Rosenfeld M. A., Pavan W. J., Krizman D. B., Nagle J., Polymeropoulos M. H., Sturley S. L., Ioannou Y. A., Higgins M. E., et al. (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 10.1126/science.277.5323.228 PubMed DOI
Loftus S. K., Morris J. A., Carstea E. D., Gu J. Z., Cummings C., Brown A., Ellison J., Ohno K., Rosenfeld M. A., Tagle D. A., Pentchev P. G., and Pavan W. J. (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232–235 10.1126/science.277.5323.232 PubMed DOI
Neufeld E. B., Wastney M., Patel S., Suresh S., Cooney A. M., Dwyer N. K., Roff C. F., Ohno K., Morris J. A., Carstea E. D., Incardona J. P., Strauss J. F. 3rd, Vanier M. T., Patterson M. C., Brady R. O., et al. (1999) The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J. Biol. Chem. 274, 9627–9635 10.1074/jbc.274.14.9627 PubMed DOI
Pentchev P. G. (2004) Niemann-Pick C research from mouse to gene. Biochim. Biophys. Acta 1685, 3–7 10.1016/j.bbalip.2004.08.005 PubMed DOI
Vanier M. T. (2013) Niemann–Pick diseases. Handb. Clin. Neurol. 113, 1717–1721 10.1016/B978-0-444-59565-2.00041-1 PubMed DOI
Wang M. L., Motamed M., Infante R. E., Abi-Mosleh L., Kwon H. J., Brown M. S., and Goldstein J. L. (2010) Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab. 12, 166–173 10.1016/j.cmet.2010.05.016 PubMed DOI PMC
Xie X., Brown M. S., Shelton J. M., Richardson J. A., Goldstein J. L., and Liang G. (2011) Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc. Natl. Acad. Sci. U.S.A. 108, 15330–15335 10.1073/pnas.1112751108 PubMed DOI PMC
Vanier M. T. (2015) Complex lipid trafficking in Niemann-Pick disease type C. J. Inherit. Metab. Dis. 38, 187–199 10.1007/s10545-014-9794-4 PubMed DOI
Oninla V. O., Breiden B., Babalola J. O., and Sandhoff K. (2014) Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2. J. Lipid Res. 55, 2606–2619 10.1194/jlr.M054528 PubMed DOI PMC
Lloyd-Evans E., Morgan A. J., He X., Smith D. A., Elliot-Smith E., Sillence D. J., Churchill G. C., Schuchman E. H., Galione A., and Platt F. M. (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat. Med. 14, 1247–1255 10.1038/nm.1876 PubMed DOI
Lloyd-Evans E., and Platt F. M. (2010) Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 11, 419–428 10.1111/j.1600-0854.2010.01032.x PubMed DOI
Stein V. M., Crooks A., Ding W., Prociuk M., O'Donnell P., Bryan C., Sikora T., Dingemanse J., Vanier M. T., Walkley S. U., and Vite C. H. (2012) Miglustat improves Purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C. J. Neuropathol. Exp. Neurol. 71, 434–448 10.1097/NEN.0b013e31825414a6 PubMed DOI PMC
Höglinger D., Haberkant P., Aguilera-Romero A., Riezman H., Porter F. D., Platt F. M., Galione A., and Schultz C. (2015) Intracellular sphingosine releases calcium from lysosomes. Elife 4, e10616 10.7554/eLife.10616 PubMed DOI PMC
Tharkeshwar A. K., Trekker J., Vermeire W., Pauwels J., Sannerud R., Priestman D. A., Te Vruchte D., Vints K., Baatsen P., Decuypere J. P., Lu H., Martin S., Vangheluwe P., Swinnen J. V., Lagae L., et al. (2017) A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency. Sci. Rep. 7, 41408 10.1038/srep41408 PubMed DOI PMC
Praggastis M., Tortelli B., Zhang J., Fujiwara H., Sidhu R., Chacko A., Chen Z., Chung C., Lieberman A. P., Sikora J., Davidson C., Walkley S. U., Pipalia N. H., Maxfield F. R., Schaffer J. E., and Ory D. S. (2015) A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J. Neurosci. 35, 8091–8106 10.1523/JNEUROSCI.4173-14.2015 PubMed DOI PMC
Aguilar A., and Saba J. D. (2012) Truth and consequences of sphingosine-1-phosphate lyase. Adv. Biol. Regul. 52, 17–30 10.1016/j.advenzreg.2011.09.015 PubMed DOI PMC
Maceyka M., and Spiegel S. (2014) Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67 10.1038/nature13475 PubMed DOI PMC
Spiegel S., and Milstien S. (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 10.1038/nrm1103 PubMed DOI
Spiegel S., and Milstien S. (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 11, 403–415 10.1038/nri2974 PubMed DOI PMC
Lee H., Lee J. K., Park M. H., Hong Y. R., Marti H. H., Kim H., Okada Y., Otsu M., Seo E. J., Park J. H., Bae J. H., Okino N., He X., Schuchman E. H., Bae J. S., and Jin H. K. (2014) Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. Nat. Commun. 5, 5514 10.1038/ncomms6514 PubMed DOI PMC
Young M. M., Takahashi Y., Fox T. E., Yun J. K., Kester M., and Wang H. G. (2016) Sphingosine kinase 1 cooperates with autophagy to maintain endocytic membrane trafficking. Cell Rep. 17, 1532–1545 10.1016/j.celrep.2016.10.019 PubMed DOI PMC
Lima S., Milstien S., and Spiegel S. (2017) Sphingosine and sphingosine kinase 1 involvement in endocytic membrane trafficking. J. Biol. Chem. 292, 3074–3088 10.1074/jbc.M116.762377 PubMed DOI PMC
Vettorazzi M., Angelina E., Lima S., Gonec T., Otevrel J., Marvanova P., Padrtova T., Mokry P., Bobal P., Acosta L. M., Palma A., Cobo J., Bobalova J., Csollei J., Malik I., et al. (2017) An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur. J. Med. Chem. 139, 461–481 10.1016/j.ejmech.2017.08.017 PubMed DOI PMC
Sarkar S., Carroll B., Buganim Y., Maetzel D., Ng A. H., Cassady J. P., Cohen M. A., Chakraborty S., Wang H., Spooner E., Ploegh H., Gsponer J., Korolchuk V. I., and Jaenisch R. (2013) Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 5, 1302–1315 10.1016/j.celrep.2013.10.042 PubMed DOI PMC
Schultz M. L., Krus K. L., Kaushik S., Dang D., Chopra R., Qi L., Shakkottai V. G., Cuervo A. M., and Lieberman A. P. (2018) Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD. Nat. Commun. 9, 3671 10.1038/s41467-018-06115-2 PubMed DOI PMC
Shen H., Giordano F., Wu Y., Chan J., Zhu C., Milosevic I., Wu X., Yao K., Chen B., Baumgart T., Sieburth D., and De Camilli P. (2014) Coupling between endocytosis and sphingosine kinase 1 recruitment. Nat. Cell Biol. 16, 652–662 10.1038/ncb2987 PubMed DOI PMC
Pankiv S., Clausen T. H., Lamark T., Brech A., Bruun J. A., Outzen H., Øvervatn A., Bjørkøy G., and Johansen T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 10.1074/jbc.M702824200 PubMed DOI
Elrick M. J., Yu T., Chung C., and Lieberman A. P. (2012) Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. Hum. Mol. Genet. 21, 4876–4887 10.1093/hmg/dds324 PubMed DOI PMC
Wheeler S., Schmid R., and Sillence D. J. (2019) Lipid–protein interactions in Niemann–Pick type C disease: insights from molecular modeling. Int. J. Mol. Sci. 20, 717 10.3390/ijms20030717 PubMed DOI PMC
Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., Tanaka K., Cuervo A. M., and Czaja M. J. (2009) Autophagy regulates lipid metabolism. Nature 458, 1131–1135 10.1038/nature07976 PubMed DOI PMC
Rubinsztein D. C., Codogno P., and Levine B. (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–730 10.1038/nrd3802 PubMed DOI PMC
Rosenbaum A. I., Zhang G., Warren J. D., and Maxfield F. R. (2010) Endocytosis of β-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc. Natl. Acad. Sci. U.S.A. 107, 5477–5482 10.1073/pnas.0914309107 PubMed DOI PMC
Gelsthorpe M. E., Baumann N., Millard E., Gale S. E., Langmade S. J., Schaffer J. E., and Ory D. S. (2008) Niemann-Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J. Biol. Chem. 283, 8229–8236 10.1074/jbc.M708735200 PubMed DOI PMC
Newton J., Hait N. C., Maceyka M., Colaco A., Maczis M., Wassif C. A., Cougnoux A., Porter F. D., Milstien S., Platt N., Platt F. M., and Spiegel S. (2017) FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. FASEB J. 31, 1719–1730 10.1096/fj.201601041R PubMed DOI PMC
Vanier M. T., and Latour P. (2015) Laboratory diagnosis of Niemann-Pick disease type C: the filipin staining test. Methods Cell Biol 126, 357–375 10.1016/bs.mcb.2014.10.028 PubMed DOI
Maetzel D., Sarkar S., Wang H., Abi-Mosleh L., Xu P., Cheng A. W., Gao Q., Mitalipova M., and Jaenisch R. (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports 2, 866–880 10.1016/j.stemcr.2014.03.014 PubMed DOI PMC
Sarkar S., Maetzel D., Korolchuk V. I., and Jaenisch R. (2014) Restarting stalled autophagy a potential therapeutic approach for the lipid storage disorder, Niemann-Pick type C1 disease. Autophagy 10, 1137–1140 10.4161/auto.28623 PubMed DOI PMC
Kimura S., Noda T., and Yoshimori T. (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 10.4161/auto.4451 PubMed DOI
Campbell C. D., Mohajeri K., Malig M., Hormozdiari F., Nelson B., Du G., Patterson K. M., Eng C., Torgerson D. G., Hu D., Herman C., Chong J. X., Ko A., O'Roak B. J., Krumm N., et al. (2014) Whole-genome sequencing of individuals from a founder population identifies candidate genes for asthma. PLoS ONE 9, e104396 10.1371/journal.pone.0104396 PubMed DOI PMC
Ko D. C., Milenkovic L., Beier S. M., Manuel H., Buchanan J., and Scott M. P. (2005) Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genet. 1, 81–95 10.1371/journal.pgen.0010007 PubMed DOI PMC
Pacheco C. D., Kunkel R., and Lieberman A. P. (2007) Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Hum. Mol. Genet. 16, 1495–1503 10.1093/hmg/ddm100 PubMed DOI
Ordonez M. P., Roberts E. A., Kidwell C. U., Yuan S. H., Plaisted W. C., and Goldstein L. S. (2012) Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1. Hum. Mol. Genet. 21, 2651–2662 10.1093/hmg/dds090 PubMed DOI PMC
Dai S., Dulcey A. E., Hu X., Wassif C. A., Porter F. D., Austin C. P., Ory D. S., Marugan J., and Zheng W. (2017) Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy 13, 1435–1451 10.1080/15548627.2017.1329081 PubMed DOI PMC
Liu H., Ma Y., He H. W., Zhao W. L., and Shao R. G. (2017) SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy 13, 900–913 10.1080/15548627.2017.1291479 PubMed DOI PMC
Lima S., Takabe K., Newton J., Saurabh K., Young M. M., Leopoldino A. M., Hait N. C., Roberts J. L., Wang H. G., Dent P., Milstien S., Booth L., and Spiegel S. (2018) TP53 is required for BECN1- and ATG5-dependent cell death induced by sphingosine kinase 1 inhibition. Autophagy 14, 1–957 10.1080/15548627.2018.1429875 PubMed DOI PMC
Kwon H. J., Abi-Mosleh L., Wang M. L., Deisenhofer J., Goldstein J. L., Brown M. S., and Infante R. E. (2009) Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224 10.1016/j.cell.2009.03.049 PubMed DOI PMC
Infante R. E., Wang M. L., Radhakrishnan A., Kwon H. J., Brown M. S., and Goldstein J. L. (2008) NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. U.S.A. 105, 15287–15292 10.1073/pnas.0807328105 PubMed DOI PMC
Rocha N., Kuijl C., van der Kant R., Janssen L., Houben D., Janssen H., Zwart W., and Neefjes J. (2009) Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 10.1083/jcb.200811005 PubMed DOI PMC
Eden E. R., Sanchez-Heras E., Tsapara A., Sobota A., Levine T. P., and Futter C. E. (2016) Annexin A1 tethers membrane contact sites that mediate ER to endosome cholesterol transport. Dev. Cell 37, 473–483 10.1016/j.devcel.2016.05.005 PubMed DOI PMC
Höglinger D., Burgoyne T., Sanchez-Heras E., Hartwig P., Colaco A., Newton J., Futter C. E., Spiegel S., Platt F. M., and Eden E. R. (2019) NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 10, 4276–4290 10.1038/s41467-019-12152-2 PubMed DOI PMC
Wilhelm L. P., Wendling C., Védie B., Kobayashi T., Chenard M. P., Tomasetto C., Drin G., and Alpy F. (2017) STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 36, 1412–1433 10.15252/embj.201695917 PubMed DOI PMC
Dong J., Du X., Wang H., Wang J., Lu C., Chen X., Zhu Z., Luo Z., Yu L., Brown A. J., Yang H., and Wu J. W. (2019) Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nat. Commun. 10, 829 10.1038/s41467-019-08791-0 PubMed DOI PMC
Zhao K., and Ridgway N. D. (2017) Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep. 19, 1807–1818 10.1016/j.celrep.2017.05.028 PubMed DOI
Wijdeven R. H., Janssen H., Nahidiazar L., Janssen L., Jalink K., Berlin I., and Neefjes J. (2016) Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat. Commun. 7, 11808 10.1038/ncomms11808 PubMed DOI PMC
Cianciola N. L., Greene D. J., Morton R. E., and Carlin C. R. (2013) Adenovirus RIDα uncovers a novel pathway requiring ORP1L for lipid droplet formation independent of NPC1. Mol. Biol. Cell 24, 3309–3325 10.1091/mbc.e12-10-0760 PubMed DOI PMC
Cheruku S. R., Xu Z., Dutia R., Lobel P., and Storch J. (2006) Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J. Biol. Chem. 281, 31594–31604 10.1074/jbc.M602765200 PubMed DOI
Boadu E., Nelson R. C., and Francis G. A. (2012) ABCA1-dependent mobilization of lysosomal cholesterol requires functional Niemann-Pick C2 but not Niemann-Pick C1 protein. Biochim. Biophys. Acta 1821, 396–404 10.1016/j.bbalip.2011.11.013 PubMed DOI
McCauliff L. A., Langan A., Li R., Ilnytska O., Bose D., Waghalter M., Lai K., Kahn P. C., and Storch J. (2019) Intracellular cholesterol trafficking is dependent upon NPC2 interaction with lysobisphosphatidic acid. Elife 8, e50832 10.7554/eLife.50832 PubMed DOI PMC
Wanikawa M., Nakamura H., Emori S., Hashimoto N., and Murayama T. (2020) Accumulation of sphingomyelin in Niemann-Pick disease type C cells disrupts Rab9-dependent vesicular trafficking of cholesterol. J. Cell. Physiol. 235, 2300–2309 10.1002/jcp.29137 PubMed DOI
Higaki K., Ninomiya H., Sugimoto Y., Suzuki T., Taniguchi M., Niwa H., Pentchev P. G., Vanier M. T., and Ohno K. (2001) Isolation of NPC1-deficient Chinese hamster ovary cell mutants by gene trap mutagenesis. J. Biochem. 129, 875–880 10.1093/oxfordjournals.jbchem.a002932 PubMed DOI
Maczis M. A., Maceyka M., Waters M. R., Newton J., Singh M., Rigsby M. F., Turner T. H., Alzubi M. A., Harrell J. C., Milstien S., and Spiegel S. (2018) Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J. Lipid Res. 59, 2297–2307 10.1194/jlr.M085191 PubMed DOI PMC
Lima S., Milstien S., and Spiegel S. (2014) A real-time high-throughput fluorescence assay for sphingosine kinases. J. Lipid Res. 55, 1525–1530 10.1194/jlr.D048132 PubMed DOI PMC
Paugh S. W., Paugh B. S., Rahmani M., Kapitonov D., Almenara J. A., Kordula T., Milstien S., Adams J. K., Zipkin R. E., Grant S., and Spiegel S. (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112, 1382–1391 10.1182/blood-2008-02-138958 PubMed DOI PMC
Pospisilova S., Marvanova P., Treml J., Moricz A. M., Ott P. G., Mokry P., Odehnalova K., Sedo O., Cizek A., and Jampilek J. (2019) Activity of N-phenylpiperazine derivatives against bacterial and fungal pathogens. Curr. Protein Pept. Sci. 20, 1119–1129 10.2174/1389203720666190913114041 PubMed DOI
Tengler J., Kapustíková I., Peško M., Govender R., Keltošová S., Mokrý P., Kollár P., O'Mahony J., Coffey A., Král'ová K., and Jampílek J. (2013) Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates. Sci. World J. 2013, 1–13 10.1155/2013/274570 PubMed DOI PMC
Bedia C., Camacho L., Casas J., Abad J. L., Delgado A., Van Veldhoven P. P., and Fabriàs G. (2009) Synthesis of a fluorogenic analogue of sphingosine-1-phosphate and its use to determine sphingosine-1-phosphate lyase activity. Chembiochem 10, 820–822 10.1002/cbic.200800809 PubMed DOI