Expanding the phenotype spectrum associated with pathogenic variants in the COL2A1 and COL11A1 genes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32427345
DOI
10.1111/ahg.12386
Knihovny.cz E-zdroje
- Klíčová slova
- COL11A1, COL2A1, Marshall syndrome, Stickler syndrome, myopia, nonsyndromic hearing loss, retinal detachment,
- MeSH
- artritida genetika MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- kojenec MeSH
- kolagen typ II genetika MeSH
- kolagen typ XI genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutační analýza DNA MeSH
- nemoci pojiva genetika MeSH
- odchlípení sítnice genetika MeSH
- percepční nedoslýchavost genetika MeSH
- předškolní dítě MeSH
- rodokmen MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- COL11A1 protein, human MeSH Prohlížeč
- COL2A1 protein, human MeSH Prohlížeč
- kolagen typ II MeSH
- kolagen typ XI MeSH
We report the clinical findings of 26 individuals from 16 unrelated families carrying variants in the COL2A1 or COL11A1 genes. Using Sanger and next-generation sequencing, 11 different COL2A1 variants (seven novel), were identified in 13 families (19 affected individuals), all diagnosed with Stickler syndrome (STL) type 1. In nine families, the COL2A1 disease-causing variant arose de novo. Phenotypically, we observed myopia (95%) and retinal detachment (47%), joint hyperflexibility (92%), midface retrusion (84%), cleft palate (53%), and various degrees of hearing impairment (50%). One patient had a splenic artery aneurysm. One affected individual carrying pathogenic variant in COL2A1 showed no ocular signs including no evidence of membranous vitreous anomaly. In three families (seven affected individuals), three novel COL11A1 variants were found. The propositus with a de novo variant showed an ultrarare Marshall/STL overlap. In the second family, the only common clinical sign was postlingual progressive sensorineural hearing impairment (DFNA37). Affected individuals from the third family had typical STL2 signs. The spectrum of disease phenotypes associated with COL2A1 or COL11A1 variants continues to expand and includes typical STL and various bone dysplasias, but also nonsyndromic hearing impairment, isolated myopia with or without retinal detachment, and STL phenotype without clinically detectable ocular pathology.
Department of Medical Genetics Nemocnice České Budějovice České Budějovice Czech Republic
Molecular Biology AGEL Laboratories Nový Jičín Czech Republic
Zobrazit více v PubMed
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248-249. https://doi.org/10.1038/nmeth0410-248
Annunen, S., Körkkö, J., Czarny, M., Warman, M. L., Brunner, H. G., Kääriäinen, H., & Ala-Kokko, L. (1999). Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. American Journal of Human Genetics, 65(4), 974-983. https://doi.org/10.1086/302585
Barat-Houari, M., Sarrabay, G., Gatinois, V., Fabre, A., Dumont, B., Genevieve, D., & Touitou, I. (2016). Mutation update for COL2A1 gene variants associated with type II collagenopathies. Human Mutation, 37(1), 7-15. https://doi.org/10.1002/humu.22915
Booth, K. T., Askew, J. W., Talebizadeh, Z., Huygen, P. L. M., Eudy, J., Kenyon, J., … Smith, S. D. (2019). Splice-altering variant in COL11A1 as a cause of nonsyndromic hearing loss DFNA37. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 21(4), 948-954. https://doi.org/10.1038/s41436-018-0285-0
Desmet, F.-O., Hamroun, D., Lalande, M., Collod-Béroud, G., Claustres, M., & Béroud, C. (2009). Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Research, 37(9), e67. https://doi.org/10.1093/nar/gkp215
Ensenberger, M. G., Thompson, J., Hill, B., Homick, K., Kearney, V., Mayntz-Press, K. A., & Krenke, B. E. (2010). Developmental validation of the PowerPlex 16 HS System: An improved 16-locus fluorescent STR multiplex. Forensic Science International. Genetics, 4(4), 257-264. https://doi.org/10.1016/j.fsigen.2009.10.007
Hoornaert, K. P., Dewinter, C., Vereecke, I., Beemer, F. A., Courtens, W., Fryer, A., & Mortier, G. R. (2006). The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene. Journal of Medical Genetics, 43(5), 406-413. https://doi.org/10.1136/jmg.2005.035717
Hoornaert, Kristien P., Vereecke, I., Dewinter, C., Rosenberg, T., Beemer, F. A., Leroy, J. G., & Mortier, G. R. (2010). Stickler syndrome caused by COL2A1 mutations: Genotype-phenotype correlation in a series of 100 patients. European Journal of Human Genetics: EJHG, 18(8), 872-880. https://doi.org/10.1038/ejhg.2010.23
Husar-Memmer, E., Ekici, A., Al Kaissi, A., Sticht, H., Manger, B., Schett, G., & Zwerina, J. (2013). Premature osteoarthritis as presenting sign of type II collagenopathy: A case report and literature review. Seminars in Arthritis and Rheumatism, 42(4), 355-360. https://doi.org/10.1016/j.semarthrit.2012.05.002
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., & MacArthur, D. G. (2019). Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. https://doi.org/10.1101/531210
Khalifa, O., Imtiaz, F., Ramzan, K., Allam, R., Hemidan, A. A., Faqeih, E., … Owain, M. A. (2014). -Marshall syndrome: Further evidence of a distinct phenotypic entity and report of new findings. American Journal of Medical Genetics. Part A, 164A(10), 2601-2606. https://doi.org/10.1002/ajmg.a.36681
Kleinberger, J., Maloney, K. A., Pollin, T. I., & Jeng, L. J. B. (2016). An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genetics in Medicine, 18(11), 1165-1165. https://doi.org/10.1038/gim.2016.13
Liberfarb, R. M., Levy, H. P., Rose, P. S., Wilkin, D. J., Davis, J., Balog, J. Z., … Rubin, B. I. (2003). The Stickler syndrome: Genotype/phenotype correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II collagen gene locus COL2A1. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 5(1), 21-27. https://doi.org/10.1097/00125817-200301000-00004
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
Miyamoto, Y., Nakashima, E., Hiraoka, H., Ohashi, H., & Ikegawa, S. (2005). A type II collagen mutation also results in oto-spondylo-megaepiphyseal dysplasia. Human Genetics, 118(2), 175-8. https://doi.org/10.1007/s00439-005-0058-0
Pihlajamaa, T., Prockop, D. J., Faber, J., Winterpacht, A., Zabel, B., Giedion, A., & Ala-Kokko, L. (1998). Heterozygous glycine substitution in the COL11A2 gene in the original patient with the Weissenbacher-Zweymüller syndrome demonstrates its identity with heterozygous OSMED (nonocular Stickler syndrome). American Journal of Medical Genetics, 80(2), 115-120. https://doi.org/10.1002/(sici)1096-8628(19981102)80:2<115::Aid-ajmg5>3.0.co;2-o
Reese, M. G., Eeckman, F. H., Kulp, D., & Haussler, D. (1997). Improved splice site detection in genie. Journal of Computational Biology, 4(3), 311-323. https://doi.org/10.1089/cmb.1997.4.311
Richards, A. J., Laidlaw, M., Meredith, S. P., Shankar, P., Poulson, A. V., Scott, J. D., & Snead, M. P. (2007). Missense and silent mutations in COL2A1 result in Stickler syndrome but via different molecular mechanisms. Human Mutation, 28(6), 639. https://doi.org/10.1002/humu.9497
Richards, A. J., McNinch, A., Martin, H., Oakhill, K., Rai, H., Waller, S., & Snead, M. P. (2010). Stickler syndrome and the vitreous phenotype: Mutations in COL2A1 and COL11A1. Human Mutation, 31(6), E1461-1471. https://doi.org/10.1002/humu.21257
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., & Laboratory Quality Assurance Committee, A. C. M.G. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17(5), 405-424. https://doi.org/10.1038/gim.2015.30
Robin, N. H., Moran, R. T., & Ala-Kokko, L. (2000). Stickler syndrome. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews®. Seattle, WA: University of Washington. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK1302/
Rose, P. S., Levy, H. P., Liberfarb, R. M., Davis, J., Szymko-Bennett, Y., Rubin, B. I., & Francomano, C. A. (2005). Stickler syndrome: Clinical characteristics and diagnostic criteria. American Journal of Medical Genetics. Part A, 138A(3), 199-207. https://doi.org/10.1002/ajmg.a.30955
Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). MutationTaster2: Mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361-362. https://doi.org/10.1038/nmeth.2890
Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(W1), W452-W457. https://doi.org/10.1093/nar/gks539
Snead, M. P., & Yates, J. R. (1999). Clinical and molecular genetics of Stickler syndrome. Journal of Medical Genetics, 36(5), 353-359.
Spranger, J., Winterpacht, A., & Zabel, B. (1994). The type II collagenopathies: A spectrum of chondrodysplasias. European Journal of Pediatrics, 153(2), 56-65. https://doi.org/10.1007/bf01959208
Tompson, S. W., Bacino, C. A., Safina, N. P., Bober, M. B., Proud, V. K., Funari, T., … Cohn, D. H. (2010). Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. American Journal of Human Genetics, 87(5), 708-712. https://doi.org/10.1016/j.ajhg.2010.10.009
Van Der Hout, A. H., Verlind, E., Beemer, F. A., Buys, C. H. C. M., Hofstra, R. M. W., & Scheffer, H. (2002). Occurrence of deletion of a COL2A1 allele as the mutation in Stickler syndrome shows that a collagen type II dosage effect underlies this syndrome. Human Mutation, 20(3), 236. https://doi.org/10.1002/humu.9061
Yeo, G., & Burge, C. B. (2004). Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. Journal of Computational Biology, 11(2-3), 377-394. https://doi.org/10.1089/1066527041410418
Zlotogora, J., Sagi, M., Schuper, A., Leiba, H., & Merin, S. (1992). Variability of Stickler syndrome. American Journal of Medical Genetics, 42(3), 337-339. https://doi.org/10.1002/ajmg.1320420316