Complementary SEM-AFM of Swelling Bi-Fe-O Film on HOPG Substrate
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
grant number FV10618
Ministry of Industry and Trade of the Czech Republic, MPO-TRIO project
RVO:68081731
Czech Academy of Sciences project
grant number LQ1601
Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020
Grant No. FEKT-S-20-6352
Technology Agency of the Czech Republic
grant ID LM2015041, MEYS CR, 2016-2019
CEITEC Nano Research Infrastructure
PubMed
32456133
PubMed Central
PMC7287891
DOI
10.3390/ma13102402
PII: ma13102402
Knihovny.cz E-resources
- Keywords
- atomic layer deposition, combined imaging, graphite substrate, surface delamination, surface tension,
- Publication type
- Journal Article MeSH
The objective of this work is to study the delamination of bismuth ferrite prepared by atomic layer deposition on highly oriented pyrolytic graphite (HOPG) substrate. The samples' structures and compositions are provided by XPS, secondary ion mass spectrometry (SIMS) and Raman spectroscopy. The resulting films demonstrate buckling and delamination from the substrates. The composition inside the resulting bubbles is in a gaseous state. It contains the reaction products captured on the surface during the deposition of the film. The topography of Bi-Fe-O thin films was studied in vacuum and under atmospheric conditions using simultaneous SEM and atomic force microscopy (AFM). Besides complementary advanced imaging, a correlative SEM-AFM analysis provides the possibility of testing the mechanical properties by using a variation of pressure. In this work, the possibility of studying the surface tension of the thin films using a joint SEM-AFM analysis is shown.
See more in PubMed
Bajpai O.P., Mandal S., Ananthakrishnan R., Mandal P., Khastgir D., Chattopadhyay S. Structural features, magnetic properties and photocatalytic activity of bismuth ferrite nanoparticles grafted on graphene nanosheets. New J. Chem. 2018;42:10712–10723. doi: 10.1039/C8NJ02030B. DOI
Ibrahim F., Hallal A., Lerma D.S., Waintal X., Tsymbal E.Y., Chshiev M. Unveiling multiferroic proximity effect in graphene. 2D Mater. 2019;7:015020. doi: 10.1088/2053-1583/ab5319. DOI
Zhang Y., Wang Y., Qi J., Tian Y., Sun M., Zhang J., Hu T., Wei M., Liu Y., Yang J. Enhanced magnetic properties of BiFeO3 thin films by doping: Analysis of structure and morphology. Nanomaterials. 2018;8:711. doi: 10.3390/nano8090711. PubMed DOI PMC
Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719–1722. doi: 10.1126/science.1080615. PubMed DOI
Singh M.K., Jang H.M., Ryu S., Jo M.-H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006;88:042907. doi: 10.1063/1.2168038. DOI
Wang C., Takahashi M., Fujino H., Zhao X., Kume E., Horiuchi T., Sakai S. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 2006;99:054104. doi: 10.1063/1.2177430. DOI
Golovina I.S., Falmbigl M., Plokhikh A.V., Parker T.C., Johnson C., Spanier J.E. Effect of annealing conditions on the electrical properties of ALD-grown polycrystalline BiFeO3 films. J. Mater. Chem. C. 2018;6:5462–5472. doi: 10.1039/C7TC05755E. DOI
Plokhikh A.V., Falmbigl M., Golovina I.S., Akbashev A.R., Karateev I.A., Presnyakov M.Y., Vasiliev A.L., Spanier J.E. Formation of BiFeO3 from a binary oxide superlattice grown by atomic layer deposition. ChemPhysChem. 2017;18:1966–1970. doi: 10.1002/cphc.201700407. PubMed DOI
Afzal A., Javed Y., Hussain S., Ali A., Yaqoob M., Mumtaz S. Enhancement in photovoltaic properties of bismuth ferrite/zinc oxide heterostructure solar cell device with graphene/indium tin oxide hybrid electrodes. Ceram. Int. 2020;46:9161–9169. doi: 10.1016/j.ceramint.2019.12.166. DOI
Pham C.D., Chang J., Zurbuchen M., Chang J.P. Synthesis and characterization of BiFeO3 thin films for multiferroic applications by radical enhanced atomic layer deposition. Chem. Mater. 2015;27:7282–7288. doi: 10.1021/acs.chemmater.5b02162. DOI
Zhang F., Sun G., Zhao W., Wang L., Zheng L., Liu S., Liu B., Dong L., Liu X., Yan G., et al. Atomic layer deposition of BiFeO3 thin films using β-diketonates and H2O. J. Phys. Chem. C. 2013;117:24579–24585. doi: 10.1021/jp4080652. DOI
Coll M., Napari M. Atomic layer deposition of functional multicomponent oxides. APL Mater. 2019;7:110901. doi: 10.1063/1.5113656. DOI
Mackus A.J.M., Schneider J.R., MacIsaac C., Baker J.G., Bent S.F. Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: A review. Chem. Mater. 2018;31:1142–1183. doi: 10.1021/acs.chemmater.8b02878. DOI
McDaniel M.D., Ngo T.Q., Hu S., Posadas A., Demkov A.A., Ekerdt J.G. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors. Appl. Phys. Rev. 2015;2:041301. doi: 10.1063/1.4934574. DOI
Coll M., Gazquez J., Fina I., Khayat Z., Quindeau A., Alexe M., Varela M., Trolier-McKinstry S., Obradors X., Puig T. Nanocrystalline ferroelectric BiFeO3 thin films by low-temperature atomic layer deposition. Chem. Mater. 2015;27:6322–6328. doi: 10.1021/acs.chemmater.5b02093. DOI
Sønsteby H.H., Fjellvåg H., Nilsen O. Functional perovskites by atomic layer deposition—An overview. Adv. Mater. Interfaces. 2017;4:1600903.
Lai S., Ehrhardt M., Lorenz P., Hirsch D., Zajadacz J., Lu J., Han B., Zimmer K. Submicron bubbles/voids formation in the subsurface region of soda-lime glass by single pulse fs laser-induced spallation. Appl. Surf. Sci. 2020;502:144134. doi: 10.1016/j.apsusc.2019.144134. PubMed DOI
Andrianova N., Borisov A., Mashkova E., Shemukhin A., Shulga V., Virgiliev Y. Relief evolution of HOPG under high-fluence 30 keV argon ion irradiation. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms. 2015;354:146–150. doi: 10.1016/j.nimb.2014.11.071. DOI
Akbashev A.R., Chen G., Spanier J.E. A facile route for producing single-crystalline epitaxial perovskite oxide thin films. Nano Lett. 2013;14:44–49. doi: 10.1021/nl4030038. PubMed DOI
Elliott S.D., Scarel G., Wiemer C., Fanciulli M., Pavia G. Ozone-based atomic layer deposition of alumina from TMA: Growth, morphology, and reaction mechanism. Chem. Mater. 2006;18:3764–3773. doi: 10.1021/cm0608903. DOI
Guerra-Nuñez C., Döbeli M., Michler J., Utke I. Reaction and growth mechanisms in Al2O3 deposited via atomic layer deposition: Elucidating the hydrogen source. Chem. Mater. 2017;29:8690–8703. doi: 10.1021/acs.chemmater.7b02759. DOI
Anderson J.S., Rittle J., Peters J.C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature. 2013;501:84–87. doi: 10.1038/nature12435. PubMed DOI PMC
Kuriyama S., Arashiba K., Nakajima K., Tanaka H., Yoshizawa K., Nishibayashi Y. Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum–dinitrogen complexes: Unique behavior of ferrocene moiety as redox active site. Chem. Sci. 2015;6:3940–3951. doi: 10.1039/C5SC00545K. PubMed DOI PMC
Porporati A.A., Tsuji K., Valant M., Axelsson A.-K., Pezzotti G. Raman tensor elements for multiferroic BiFeO3 with rhombohedral R3c symmetry. J. Raman Spectrosc. 2010;41:84–87. doi: 10.1002/jrs.2394. DOI
Hermet P., Goffinet M., Kreisel J., Ghosez P. Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys. Rev. B. 2007;75 doi: 10.1103/PhysRevB.75.220102. DOI
Kaspar P., Sobola D., Dallaev R., Ramazanov S., Nebojsa A., Rezaee S., Grmela L. Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, ellipsometry and XPS. Appl. Surf. Sci. 2019;493:673–678. doi: 10.1016/j.apsusc.2019.07.058. DOI
Collar K.N., Li J., Jiao W., Guan Y., Losurdo M., Humlicek J., Brown A.S. Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy. AIP Adv. 2017;7:075016. doi: 10.1063/1.4986751. DOI
Fujii T., De Groot F.M.F., Sawatzky G.A., Voogt F.C., Hibma T., Okada K. In situ XPS analysis of various iron oxide films grown by NO2 -assisted molecular-beam epitaxy. Phys. Rev. B. 1999;59:3195–3202. doi: 10.1103/PhysRevB.59.3195. DOI
Schafranek R., Baniecki J.D., Ishii M., Kotaka Y., Kurihara K. The SrTiO3/BiFeO3(001) interface: Commutativity of energy band discontinuities. New J. Phys. 2013;15:053014. doi: 10.1088/1367-2630/15/5/053014. DOI
Chaitongrat B., Chaisitsak S. Fabrication of SWNTs/α-Fe2O3 as room-temperature LPG sensor. 2015 IEEE SENSORS. 2015:1–4. doi: 10.1109/icsens.2015.7370467. DOI
Li Y., Sritharan T., Zhang S., He X., Liu Y., Chen T. Multiferroic properties of sputtered BiFeO3 thin films. Appl. Phys. Lett. 2008;92:132908. doi: 10.1063/1.2901871. DOI
Huang Y., Tang J., Gai L., Gong Y., Guan H., He R., Lyu H. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chem. Eng. J. 2017;319:229–239. doi: 10.1016/j.cej.2017.03.015. DOI
Hu Y., Li D., Sun F., Weng Y., You S., Shao Y. Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p -chlorophenol. J. Hazard. Mater. 2016;301:362–370. doi: 10.1016/j.jhazmat.2015.09.008. PubMed DOI
Lin W., Yu X., Zhu Y., Zhang Y. Graphene oxide/BiOCl nanocomposite films as efficient visible light photocatalysts. Front. Chem. 2018;6:274. doi: 10.3389/fchem.2018.00274. PubMed DOI PMC
Zhang Q., Yuan S., Xu B., Xu Y., Cao K., Jin Z., Qiu C., Zhang M., Su C., Ohno T. A facile approach to build Bi2O2CO3/PCN nanohybrid photocatalysts for gaseous acetaldehyde efficient removal. Catal. Today. 2018;315:184–193. doi: 10.1016/j.cattod.2018.03.071. DOI
Jaiswar S., Mandal K.D. Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time. J. Phys. Chem. C. 2017;121:19586–19601. doi: 10.1021/acs.jpcc.7b05415. DOI
Shukla K.K., Shahi P., Gopal S., Kumar A., Ghosh A.K., Singh R., Sharma N., Das A., Sinha A.K., Joshi A.G., et al. Magnetic and optical properties of Fe doped crednerite CuMnO2. RSC Adv. 2015;5:83504–83511. doi: 10.1039/C5RA13305J. DOI
Luo C., Ji X., Hou S., Eidson N., Fan X., Liang Y., Deng T., Jiang J., Wang C. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-Ion batteries. Adv. Mater. 2018;30 doi: 10.1002/adma.201706498. PubMed DOI
Omran M., Fabritius T., Elmahdy A.M., Abdel-Khalek N.A., El-Aref M., ElManawi A.E.-H. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 2015;345:127–140. doi: 10.1016/j.apsusc.2015.03.209. DOI
Cuharuc A.S., Zhang G., Unwin P.R. Electrochemistry of ferrocene derivatives on highly oriented pyrolytic graphite (HOPG): Quantification and impacts of surface adsorption. Phys. Chem. Chem. Phys. 2016;18:4966–4977. doi: 10.1039/C5CP06325F. PubMed DOI
Jin T., Han Q., Wang Y., Jiao L. 1D Nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small. 2017;14:1703086. doi: 10.1002/smll.201703086. PubMed DOI
Teichert C., Beinik I. Conductive atomic-force microscopy investigation of nanostructures in microelectronics. Nanowires. 2010:691–721. doi: 10.1007/978-3-642-10497-8_23. DOI
Hartmann U. Magnetic force microscopy. Annu. Rev. Mater. Res. 1999;29:53–87. doi: 10.1146/annurev.matsci.29.1.53. DOI
Zhong J., Yan J. Seeing is believing: Atomic force microscopy imaging for nanomaterial research. RSC Adv. 2016;6:1103–1121. doi: 10.1039/C5RA22186B. DOI
Liu S., Wang Y. Application of AFM in microbiology: A review. Scanning. 2010;32:61–73. doi: 10.1002/sca.20173. PubMed DOI
Abadias G., Chason E., Keckes J., Sebastiani M., Thompson G.B., Barthel E., Doll G.L., Murray C., Stoessel C.H., Martinu L. Review article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A. 2018;36:020801. doi: 10.1116/1.5011790. DOI
Xu T. Characterization of minienvironments in a clean room: Design characteristics and environmental performance. Build. Environ. 2007;42:2993–3000. doi: 10.1016/j.buildenv.2006.10.020. DOI
Frackers, Foes OK New Pact. [(accessed on 22 May 2020)]; Available online: https://www.wvgazettemail.com/business/frackers-foes-ok-new-pact/article_685cc916-7eb3-589f-9436-fa976fb24411.html.
Szirte T., Green S. Applied dimensional analysis and modeling. J. Fluids Eng. 1998;120:637. doi: 10.1115/1.2820715. DOI
Ma S., Gao T., Chen X., Xiao C., Lu T., Jiang X. Formation and behaviors of helium bubbles in Li4SiO4: A molecular dynamics simulation. Comput. Mater. Sci. 2019;169:169. doi: 10.1016/j.commatsci.2019.109104. DOI
Zitzler L., Herminghaus S., Mugele F. Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B. 2002;66 doi: 10.1103/PhysRevB.66.155436. DOI
Multiferroic/Polymer Flexible Structures Obtained by Atomic Layer Deposition
Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel
Piezoelectric Current Generator Based on Bismuth Ferrite Nanoparticles
Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG