Survival of Brucella abortus S19 and other Brucella spp. in the presence of oxidative stress and within macrophages
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32462327
PubMed Central
PMC8219583
DOI
10.1007/s12223-020-00798-1
PII: 10.1007/s12223-020-00798-1
Knihovny.cz E-zdroje
- Klíčová slova
- Brucella, Fe2 +, H2O2, Macrophages, Oxidative stress,
- MeSH
- adenosintrifosfát metabolismus MeSH
- bakteriální geny MeSH
- Brucella abortus fyziologie MeSH
- Brucella klasifikace fyziologie MeSH
- buněčné linie MeSH
- cytokiny metabolismus MeSH
- druhová specificita MeSH
- makrofágy imunologie mikrobiologie MeSH
- mikrobiální viabilita MeSH
- mutace MeSH
- myši MeSH
- oxidační stres * MeSH
- peroxid vodíku metabolismus MeSH
- počet mikrobiálních kolonií MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- cytokiny MeSH
- peroxid vodíku MeSH
- železo MeSH
The evolutionary "success" of the genus Brucella depends on the ability to persist both in the environment as well as inside of even activated macrophages of the animal host. For that, the Brucellae produce catalase and superoxide dismutase to defend against oxidative stress. Since the deletion of the mglA gene in the B. abortus S19 vaccine strain resulted not only in an increased tolerance to H2O2 but also in the induction of cytokines in macrophages, we here investigated the effect of oxidative stress (Fe2+ and H2O2) on the survival of B. abortus S19 and the isogenic B. abortus S 19 ∆mglA 3.14 deletion mutant in comparison with B. neotomae 5K33, Brucella strain 83/13, and B. microti CCM4915. These Brucellae belong to different phylogenetic clades and show characteristic differences in the mgl-operon. From the various Brucellae tested, B. abortus S19 showed the highest susceptibility to oxidative stress and the lowest ability to survive inside of murine macrophages. B. abortus S19 ∆mglA 3.14 as well as B. neotomae, which also belongs to the classical core clade of Brucella and lacks the regulators of the mgl-operon, presented the highest degree of tolerance to H2O2 but not in the survival in macrophages. The latter was most pronounced in case of an infection with B. 83/13 and B. microti CCM4915. The various Brucellae investigated here demonstrate significant differences in tolerance against oxidative stress and different survival in murine macrophages, which, however, do not correlate directly.
Zobrazit více v PubMed
Audic S, Lescot M, Claverie JM, Scholz HC. Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics. 2009;10:352. doi: 10.1186/1471-2164-10-352. PubMed DOI PMC
Baek SH, Rajashekara G, Splitter GA, Shapleigh JP (2004) Denitrification genes regulate Brucella virulence in mice. J Bacteriol 186:6025–6031. 10.1128/JB.186.18.6025-6031.2004 PubMed PMC
Baldwin CL, Jiang X, Fernandes GM. Macrophage control of Brucella abortus: influence of cytokines and iron. Trends Microbiol. 1993;1:99–104. doi: 10.1016/0966-842X(93)90115-8. PubMed DOI
Bricker BJ, Tabatabai LB, Judge A, Deyoe BL. Cloning, expression and occurrence of the Brucella Cu-Zn superoxide-dismutase. Infect Immun. 1990;58:2935–2939. doi: 10.1128/iai.58.9.2935-2939.1990. PubMed DOI PMC
Canning PC, Deyoe JA, Roth A. Opsonin-dependent stimulation of bovine neutrophil oxidative metabolism by Brucella abortus. Amer J Vet Res. 1988;49:160–163. PubMed
Covert J, Mathison AJ, Eskra L, Banai M. Brucella melitensis, B neotomae and B. ovis elicit common and distinctive macrophage defense transcriptional response. Exp Biol Med. 2009;234:1450–1467. doi: 10.3181/0904-RM-124. PubMed DOI PMC
Crasta OR, Folkerts O, Fei Z, Mane SP. Genome sequence of Brucella abortus vaccine candidate S19 compared to virulent strains yields candidate virulence genes. PLoS One. 2008;3(1–13):e2193. doi: 10.1371/journal.pone.0002193. PubMed DOI PMC
Crichton RR, Wilmet S, Legssyer R, War RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorgan Biochem. 2002;91:9–18. doi: 10.1016/S0162-0134(02)00461-0. PubMed DOI
Cutler SJ, Whatmore AM, Commander NJ. Brucellosis-new aspects of an old disease. J Appl Microbiol. 2005;98:1270–1281. doi: 10.1111/j.1365-2672.2005.02622.x. PubMed DOI
Eisenberg T, Hamann HP, Kaim U, Schlez K, Seeger K. Isolation of potentially novel Brucella spp. from frogs. Appl Environ Microbiol. 2012;78:3753–3755. doi: 10.1128/AEM.07509-11. PubMed DOI PMC
Eschenbrenner M, Wagner MA, Horn TA, Kraycer JA (2002) Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M. J Bacteriol 184:4962–4970. 10.1128/JB.184.18.4962-4970.2002 PubMed PMC
Fortier AH, Leiby DA, Naranyan RB, Asafoadjej E (1995) Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun 63:1478–1483. http://iai.asm.org/content/63/4/1478 PubMed PMC
Gerhardt P. The nutrition of Brucellae. Bacteriol Rev. 1958;22:81–98. doi: 10.1128/br.22.2.81-98.1958. PubMed DOI PMC
Harmon BG, Adams LG. Assessment of bovine mammary gland macrophage oxidative burst activity in chemiluminescence assay. Amer J Vet Res. 1987;48:119–125. PubMed
Hort GM, Weisenburger J, Borsdorf B, Peters C. Delayed type hypersensitivity-associated disruption of splenic periarteriolar lymphatic sheaths coincides with temporary loss of IFNγ production and impaired eradication of bacteria in Brucella abortus-infected mice. Microbes Infect. 2003;5:95–106. doi: 10.1016/S1286-4579(02)00076-X. PubMed DOI
Hubálek Z, Scholz HC, Sedláček I, Melzer F. Brucellosis of the common vole (Microtus arvalis) Vectore Borne Zoonotic Dis. 2008;7:679–688. doi: 10.1089/vbz.2007.0143. PubMed DOI
Jacob J, Hort GM, Overhoff P, Mielke ME. In vitro and in vivo characterization of smooth small colony variants of Brucella abortus S19. Microbes Infect. 2006;8:363–371. doi: 10.1016/j.micinf.2005.07.003. PubMed DOI
Jacob J, Finke A, Mielke ME. The mglA gene and its flanking regions in Brucella. The role of mglA in tolerance to hostile environments, Fe-metabolism and in vivo persistence. Int J Med Microbiol. 2012;302:148–154. doi: 10.1016/j.ijmm.2012.02.001. PubMed DOI
Jacob J, Makou M, Finke A, Mielke M. Inflammatory response of TLR4 deficient spleen macrophages (CRL2471) to Brucella abortus S19 and an isogenic ΔmglA deletion mutant. Int J Med Microbiol. 2016;306:141–151. doi: 10.1016/j.ijmm.2016.02.006. PubMed DOI
Jiang X, Baldwin CL. Iron augments macrophage mediated killing of Brucella abortus alone and in conjunction with IFNγ. Cell Immunol. 1993;248:397–407. doi: 10.1006/cimm.1993.1121. PubMed DOI
Jiménez de Bagues MPJ, Quahrani-Bettache S, Quintana JF, Mitjana O. The new species Brucella microti replicates in macrophages and causes death in murine models of infection. J Inf Dis. 2010;202:3–11. doi: 10.1086/653084. PubMed DOI
Jiménez de Bagues MPJ, Itturalde M, Arias MA, Pardo J. The new strains Brucella inopinata BO1 and Brucella 83-210 behave biologically like classic infectious Brucella species and cause death in murine models on infection. J Inf Dis. 2014;210:467–472. doi: 10.1093/infdis/jiu102. PubMed DOI
Johnson EE, Resnick MW. Iron metabolism and the innate response to infection. Microbes Infect. 2012;14:207–216. doi: 10.1016/j.micinf.2011.10.001. PubMed DOI PMC
Köhler S, Porte F, Jubier-Maurin V, Quahrani-Bettache S. The intramacrophagic environment of Brucella suis and bacterial response. Vet Microbiol. 2002;90:299–309. doi: 10.1016/S0378-1135(02)00215-8. PubMed DOI
Köhler S, Michaux-Charachon S, Porte F, Ramuz M. What is the nature of the replicative niche of a stealthy bug named Brucella. Trends Microbiol. 2003;11:215–219. doi: 10.1016/S0966-842X(03)00078-7. PubMed DOI
Kremer M. The Fenton reaction. Dependence of the rate on pH. J Phys Chem. 2003;107:1734–1741. doi: 10.1021/jp020654p. DOI
Kulakov YK, Guige-Talet PG, Ramuz MR, O'Callaghan DO. Response of Brucella suis 1330 and B.canis RM6/66 to growth at acidic pH and induction of an adaptive acid tolerance response. Res Microbiol. 1997;148:145–151. doi: 10.1016/S0923-2508(97)87645-0. PubMed DOI
Liu H, Li XZ, Leng YJ, Wang C. Kinetic modelling of electro-Fenton reaction in aqueous solution. Water Res. 2007;41:1161–1167. doi: 10.1016/j.watres.2006.12.006. PubMed DOI
McCormack JM, Moore SC, Gatewood JW, Walker WS. Mouse splenic macrophage cell lines with different antigen-presenting activities for CD4+ helper T cell subsets and allogeneic CD8+ T cells. Cell Immunol. 1992;145:359–371. doi: 10.1016/0008-8749(92)90338-P. PubMed DOI
Moreno E, Moriyon I (2006) The genus Brucella. prokaryotes. 5:315–456. 10.1007/0-387-30745-1_17
Moustafa DA, Jain N, Sriranganathan N, Vemulapalli R. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae. PLoS One. 2010;5:e14112. doi: 10.1371/journal.pone.0014112. PubMed DOI PMC
Moustafa DA, Garg VK, Jain N, Sriranganathan N. Immunization in mice with γ-irradiated Brucella neotomae and its recombinant strains induces protection against virulent B.abortus, B.melitensis and B.suis challenge. Vaccine. 2011;29:784–794. doi: 10.1016/j.vaccine.2010.11.018. PubMed DOI PMC
Newitt AW, Koppa TM, Gudakunst DW. Water-borne outbreak of Brucella melitensis infection. Am J Publ Health. 1939;29:739–743. doi: 10.2105/AJPH.29.7.739. PubMed DOI PMC
Ong ST, Ho JZS, Ho B, Ding JL. Iron-withholding strategy in innate immunity. Immunobiology. 2006;211:295–314. doi: 10.1016/j.imbio.2006.02.004. PubMed DOI
Ouahrani-Bettache S, Jiménez de Bagüés MP, de la Garza J, Freddi L, Bueso JP, Lyonnais S, Al Dahouk S, De Biase D, Köhler S, Occhialini A. Lethality of Brucella microti in a murine model of infection depends on the wbkE gene involved in O-polysaccharide synthesis. Virulence. 2019;10:868–878. doi: 10.1080/21505594.2019.1682762. PubMed DOI PMC
Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev. 2010;34:379–394. doi: 10.1111/j.1574-6976.2010.00211.x. PubMed DOI
Pierre JL, Fontecave M. Iron and activated oxygen species in biology: the basic chemistry. Biometal. 1999;12:195–199. doi: 10.1023/A:1009252919854. PubMed DOI
Plommet M. Minimal requirements for growth of Brucella suis and other Brucella species. Zbl Bakt. 1991;275:436–450. doi: 10.1016/S0934-8840(11)80165-9. PubMed DOI
Porte F, Liautard JP, Köhler F. Early acidification of phagosomes continuing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun. 1999;67:4041–4047. doi: 10.1128/IAI.67.8.4041-4047.1999. PubMed DOI PMC
Repine JE, Fox RB, Berger EM. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical. J Biol Chem. 1981;256:7094–7096. doi: 10.1016/S0021-9258(19)68927-1. PubMed DOI
Roop RM, Bellaire BH, Valderas MW, Cardelli JA. Adaptation of the Brucella to their intracellular niche. Mol Microbiol. 2004;52:621–630. doi: 10.1111/j.1365-2958.2004.04017.x. PubMed DOI
Roset MS, Alefantis TG, DelVecchio VG, Briones G. Iron-dependent reconfiguration of the proteome underlies the intracellular lifestyle of Brucella abortus. Sci Rep. 2017;7:1–15. doi: 10.1038/s41598-017-11283-0. PubMed DOI PMC
Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev. 2004;2:946–954. doi: 10.1038/nrmicro1046. PubMed DOI
Schulze E. Bakterizide Eigenschaften von Grund- und Mineralwasser. BGBl. 1995;38:438–440.
Stoenner HG, Lackmann DBA. New species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am JVet Res. 1957;99:47–51. PubMed
Stumm A (2002) Genese und Entwicklung der Mineralwässer in Bad Brambach. Bergakademie Freiberg, Dissertation, 119 S. http://nbnresolving.de/urn:nbn:de:swb:105-1965775
Theurl I, Ludwiczek S, Eller P, Seifert M. Pathways for the regulation of body iron homeostasis in response to experimental iron overload. J Hepatol. 2005;43:711–719. doi: 10.1016/j.jhep.2005.03.030. PubMed DOI
Tiller RV, Gee JE, Frace MA, Taylor TK. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Env Microbiol. 2010;76:5837–5845. doi: 10.1128/AEM.00620-10. PubMed DOI PMC
Tiller RV, Gee JE, Lonsway DR, Gribble S, Bell SC, Jennison AV, Bates J, Coulter C, Hoffmaster AR, De BK. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. BMC Microbiol. 2010;10:23–34. doi: 10.1186/1471-2180-10-23. PubMed DOI PMC
Verger JM, Grimont F, Grimont PAD, Grayon M. Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization. Int J Syst Bacteriol. 1985;35:292–295. doi: 10.1099/00207713-35-3-292. DOI
Von Storch K, Kowski P, Strauch G, Trettin R. Mineral- und Heilwässer in Sachsen-eine isotopenanalytische Charakterisierung (mineral and curative waters in Saxonia-isotope analytical characterization) Isot Environ Health Stud. 1996;32:387–403. doi: 10.1080/10256019608234030. PubMed DOI
Wattam AR, Williams KP, Snyder EE, Almeida NF. Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol. 2009;191:3569–3579. doi: 10.1128/JB.01767-08. PubMed DOI PMC
Wattam AR, Inzana TJ, Williams KP, Mane SP. Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway. mBio. 2012;3:e00246–e00212. doi: 10.1128/mBio.00246-12. PubMed DOI PMC
Wattam AR, Foster JT, Mane SP, Beckstrom-Sternberg SM. Comparative phylogenomics and evolution of the Brucellae reveal a path to virulence. J Bacteriol. 2014;196:920–930. doi: 10.1128/JB.01091-13. PubMed DOI PMC
Wilson CM, Gatewood JM, McCormack JM, Walker WS. Immortalization of growth factor-dependent mouse splenic macrophages derived from cloned progenitors. J Immun Meth. 1991;137:17–25. doi: 10.1016/0022-1759(91)90389-W. PubMed DOI
Winterbourn C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82-83:969–974. doi: 10.1016/0378-4274(95)03532-X. PubMed DOI