• This record comes from PubMed

Personality reflection in the brain's intrinsic functional architecture remains elusive

. 2020 ; 15 (6) : e0232570. [epub] 20200602

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

In the last years, there has been a considerable increase of research into the neuroimaging correlates of inter-individual temperament and character variability-an endeavour for which the term 'personality neuroscience' was coined. Among other neuroimaging modalities and approaches, substantial work focuses on functional connectivity in resting state (rs-FC) functional magnetic resonance imaging data. In the current paper, we set out to independently query the questions asked in a highly cited study that reported a range of functional connectivity correlates of personality dimensions assessed by the widely used 'Big Five' Personality Inventory. Using a larger sample (84 subjects) and an equivalent data analysis pipeline, we obtained widely disagreeing results compared to the original study. Overall, the results were in line with the hypotheses of no relation between functional connectivity and personality, when more precise permutation-based multiple testing procedures were applied. The results demonstrate that as with other neuroimaging studies, great caution should be applied when interpreting the findings, among other reasons due to multiple testing problem involved at several levels in many neuroimaging studies. Of course, the current study results can not ultimately disprove the existence of some link between personality and brain's intrinsic functional architecture, but clearly shows that its form is very likely different and much more subtle and elusive than was previously reported.

See more in PubMed

Mischel W. Toward an integrative science of the person. Annu Rev Psychol. 2004;55:1–22. 10.1146/annurev.psych.55.042902.130709 PubMed DOI

Digman JM. Personality Structure—Emergence of the 5-Factor Model. Annu Rev Psychol. 1990;41:417–40. 10.1146/annurev.ps.41.020190.002221 DOI

Costa PTM, R. R. NEO PI-R professional manual: Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI). Odessa, FL: Psychological Assessment Resources; 1992.

DeYoung CG, Gray JR. Personality neuroscience: explaining individual differences in affect, behaviour and cognition Cambridge Handbook of Personality Psychology. 2009:323–46.

Wei LQ, Duan XJ, Yang Y, Liao W, Gao Q, Ding JR, et al. The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res. 2011;1419:68–75. 10.1016/j.brainres.2011.08.060 PubMed DOI

Haas BW, Omura K, Constable RT, Canli T. Emotional conflict and neuroticism: Personality-dependent activation in the amygdala and subgenual anterior cingulate (vol 121, pg 249, 2007). Behav Neurosci. 2007;121(6):1173-. PubMed

Wright CI, Williams D, Feczko E, Barrett LF, Dickerson BC, Schwartz CE, et al. Neuroanatomical correlates of extraversion and neuroticism. Cereb Cortex. 2006;16(12):1809–19. 10.1093/cercor/bhj118 PubMed DOI

Xu JS, Potenza MN. White matter integrity and five-factor personality measures in healthy adults. Neuroimage. 2012;59(1):800–7. 10.1016/j.neuroimage.2011.07.040 PubMed DOI PMC

Bjornebekk A, Fjell AM, Walhovd KB, Grydeland H, Torgersen S, Westlye LT. Neuronal correlates of the five factor model (FFM) of human personality: Multimodal imaging in a large healthy sample. Neuroimage. 2013;65:194–208. 10.1016/j.neuroimage.2012.10.009 PubMed DOI

Servaas MN, Geerligs L, Renken RJ, Marsman JBC, Ormel J, Riese H, et al. Connectomics and Neuroticism: An Altered Functional Network Organization. Neuropsychopharmacol. 2015;40(2):296–304. 10.1038/npp.2014.169 PubMed DOI PMC

Li J, Tian M, Fang H, Xu M, Li H, Liu J. Extraversion predicts individual differences in face recognition. Communicative & Integrative Biology. 2010;3(4):295–8. 10.4161/cib.3.4.12093 PubMed DOI PMC

Lucas RE, Diener E, Grob A, Suh EM, Shao L. Cross-cultural evidence for the fundamental features of extraversion. J Pers Soc Psychol. 2000;79(3):452–68. 10.1037/0022-3514.79.3.452 PubMed DOI

Wei LQ, Duan XJ, Zheng CY, Wang SS, Gao Q, Zhang ZQ, et al. Specific Frequency Bands of Amplitude Low-Frequency Oscillation Encodes Personality. Hum Brain Mapp. 2014;35(1):331–9. 10.1002/hbm.22176 PubMed DOI PMC

Aghajani M, Veer IM, van Tol MJ, Aleman A, van Buchem MA, Veltman DJ, et al. Neuroticism and extraversion are associated with amygdala resting-state functional connectivity. Cogn Affect Behav Ne. 2014;14(2):836–48. 10.3758/s13415-013-0224-0 PubMed DOI

Sampaio A, Soares JM, Coutinho J, Sousa N, Goncalves OF. The Big Five default brain: functional evidence. Brain Struct Funct. 2014;219(6):1913–22. 10.1007/s00429-013-0610-y PubMed DOI

Suslow T, Kugel H, Reber H, Bauer J, Dannlowski U, Kersting A, et al. Automatic Brain Response to Facial Emotion as a Function of Implicitly and Explicitly Measured Extraversion. Neuroscience. 2010;167(1):111–23. PubMed

DeYoung CG, Peterson JB, Higgins DM. Sources of Openness/Intellect: Cognitive and neuropsychological correlates of the fifth factor of personality. J Pers. 2005;73(4):825–58. 10.1111/j.1467-6494.2005.00330.x PubMed DOI

DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR. Testing Predictions From Personality Neuroscience: Brain Structure and the Big Five. Psychol Sci. 2010;21(6):820–8. 10.1177/0956797610370159 PubMed DOI PMC

Graziano WG, Habashi MM, Sheese BE, Tobin RA. Agreeableness, empathy, and helping: A person X situation perspective. J Pers Soc Psychol. 2007;93(4):583–99. 10.1037/0022-3514.93.4.583 PubMed DOI

Nettle D, Liddle B. Agreeableness is related to social-cognitive, but not social-perceptual, theory of mind. Eur J Personality. 2008;22(4):323–35. 10.1002/per.672 DOI

Weisberg YJ, DeYoung CG, Hirsh JB. Gender differences in personality across the ten aspects of the Big Five. Front Psychol. 2011;2 10.3389/fpsyg.2011.00178 PubMed DOI PMC

Adelstein JS, Shehzad Z, Mennes M, DeYoung CG, Zuo XN, Kelly C, et al. Personality Is Reflected in the Brain’s Intrinsic Functional Architecture. Plos One. 2011;6(11). 10.1371/journal.pone.0027633 PubMed DOI PMC

Costa PTM, R. R. The NEO-PI/NEO-FFI manual supplement. Odessa, FL: Psychological Assessment Resources; 1989.

Hřebíčková M. NEO—PI—R. NEO osobnostní inventář (podle NEO—PIR P.T. Costy a R. R. McCraee). 1st ed Prague: Testcentrum; 2001.

Fox MD, Zhang DY, Snyder AZ, Raichle ME. The Global Signal and Observed Anticorrelated Resting State Brain Networks. J Neurophysiol. 2009;101(6):3270–83. 10.1152/jn.90777.2008 PubMed DOI PMC

Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37(1):90–101. 10.1016/j.neuroimage.2007.04.042 PubMed DOI PMC

Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates (vol 113, pg 7900, 2016). P Natl Acad Sci USA. 2016;113(33):E4929–E. PubMed PMC

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97. 10.1016/j.neuroimage.2014.01.060 PubMed DOI PMC

Glatard T., Lewis L.B., da Silva R.F., Adalat R., Beck N., Lepage C., et al. Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics. 2015;9(12) 10.3389/fninf.2015.00012 PubMed DOI PMC

Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage. 2013;83:550–8. 10.1016/j.neuroimage.2013.05.099 PubMed DOI PMC

Kruggel F, von Cramon DY, Descombes X. Comparison of filtering methods for fMRI datasets. Neuroimage. 1999;10(5):530–43. 10.1006/nimg.1999.0490 PubMed DOI

Chai XQJ, Castanon AN, Ongur D, Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012;59(2):1420–8. 10.1016/j.neuroimage.2011.08.048 PubMed DOI PMC

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage. 2009;44(3):893–905. 10.1016/j.neuroimage.2008.09.036 PubMed DOI PMC

Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage. 2009;47(4):1408–16. 10.1016/j.neuroimage.2009.05.005 PubMed DOI

Chang C, Glover GH. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage. 2009;47(4):1448–59. 10.1016/j.neuroimage.2009.05.012 PubMed DOI PMC

Hayasaka S, Nichols TE. Validating cluster size inference: random field and permutation methods. Neuroimage. 2003;20(4):2343–56. 10.1016/j.neuroimage.2003.08.003 PubMed DOI

Worsley KJ, Evans AC, Marrett S, Neelin P. A 3-Dimensional Statistical-Analysis for Cbf Activation Studies in Human Brain. J Cerebr Blood F Met. 1992;12(6):900–18. 10.1038/jcbfm.1992.127 PubMed DOI

Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp. 1996;4(1):58–73. 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O PubMed DOI

Petersson KM, Nichols TE, Poline JB, Holmes AP. Statistical limitations in functional neuroimaging II. Signal detection and statistical inference. Philos T R Soc B. 1999;354(1387):1261–81. 10.1098/rstb.1999.0478 PubMed DOI PMC

Poline JB, Worsley KJ, Evans AC, Friston KJ. Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage. 1997;5(2):83–96. 10.1006/nimg.1996.0248 PubMed DOI

Hayasaka S, Phan KL, Liberzon I, Worsley KJ, Nichols TE. Nonstationary cluster-size inference with random field and permutation methods. Neuroimage. 2004;22(2):676–87. 10.1016/j.neuroimage.2004.01.041 PubMed DOI

Roels SP, Bossier H, Loeys T, Moerkerke B. Data-analytical stability of cluster-wise and peak-wise inference in fMRI data analysis. J Neurosci Meth. 2015;240:37–47. 10.1016/j.jneumeth.2014.10.024 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...