Fractionation Analysis of Mercury in Soils: A Comparison of Three Techniques for Bioavailable Mercury Fraction Determination

. 2020 Sep ; 39 (9) : 1670-1677. [epub] 20200728

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32516439

Grantová podpora
19-11528S Grantová Agentura Ceské Republiky - International

Knowledge of the fractionation of mercury in soils in the vicinity of abandoned cinnabar mines is essential for assessing the usability of soils for the cultivation of agriculturally important crops. Two different sequential extraction methods and the technique of diffusive gradients in thin films (DGT) were applied and compared for fractionation of mercury in soils from mercury-contaminated sites intended for farming purposes. The mercury found in these soils was primarily in the form of mercury sulfide (58.6-83.9%), followed by 6.7 to 15.4% of organically bound mercury and 2.9 to 23.2% of elemental mercury. Up to 10.3% of labile mercury species were determined by both sequential extraction methods in these soils. However, only 0.01 to 0.13% of mercury was determined as a bioavailable fraction using the DGT technique. Both sequential extraction methods tested for the fractionation analysis of mercury in contaminated soils were in excellent agreement. The content of the mobile (labile) mercury determined by the sequential extraction methods was statistically significantly higher (p < 0.0001) than the content of bioavailable mercury determined by the DGT technique. Environ Toxicol Chem 2020;39:1670-1677. © 2020 SETAC.

Zobrazit více v PubMed

Biester H, Muller G, Scholer HF. 2002. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191-203.

Bloom NS, Preus E, Katon J, Hiltner M. 2003. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233-248.

Boszke L, Kowalski A, Astel A, Baranski A, Gworek B, Siepak J. 2008. Mercury mobility and bioavailability in soil from contaminated area. Environ Geol 55:1075-1087.

Coufalik P, Cervenka R, Komarek J. 2011. Mercury speciation in soil in vicinity of coal beds using sequential extraction. Environ Earth Sci 62:421-427.

Coufalik P, Komarek J. 2014. The use of thermal desorption in the speciation analysis of mercury in soil, sediments and tailings. J Anal Chem 69:1123-1129.

Coufalik P, Krasensky P, Dosbaba M, Komarek J. 2012. Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia. Cent Eur J Chem 10:1565-1573.

Davison W, Zhang H. 1994. In-situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 367:546-548.

Fernandez-Martinez R, Loredo J, Ordonez A, Rucandio I. 2014. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Environ Sci Process Impacts 16:1069-1075.

Fernandez-Martinez R, Loredo J, Ordonez A, Rucandio MI. 2006. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ Pollut 142:217-226.

Hojdová M. 2008. Mercury speciation determined by thermo-desorption analysis at two sites contaminated by mining. PhD Dissertation. Charles University, Prague, Czech Republic.

Hojdová M, Navratil T, Rohovec J, Penizek V, Grygar T. 2009. Mercury distribution and speciation in soils affected by historic mercury mining. Water Air and Soil Pollut 200:89-99.

Issaro N, Abi-Ghanem C, Bermond A. 2009. Fractionation studies of mercury in soils and sediments: A review of the chemical reagents used for mercury extraction. Anal Chi Acta 631:1-12.

Kocman D, Horvat M, Kotnik J. 2004. Mercury fractionation in contaminated soils from the Idrija mercury mine region. J Environ Monit 6:696-703.

Liu JL, Feng XB, Qiu GL, Anderson CWN, Yao H. 2012. Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) using the diffusive gradient in thin films technique. Environ Sci Technol 46:11013-11020.

Pelcová P, Dočekalová H, Kleckerová A. 2015. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography-Atomic fluorescence spectrometry after microwave extraction. Anal Chim Acta 866:21-26.

Pelcová P, Dočekalová H, Kleckerová A. 2014. Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters. Anal Chim Acta 819:42-48.

Pelcová P, Zouharová I, Ridošková A, Smolíková V. 2019. Evaluation of mercury availability to pea parts (Pisum sativum L) in urban soils: Comparison between diffusive gradients in thin films technique and plant model. Chemosphere 234:373-378.

Ravichandran M. 2004. Interactions between mercury and dissolved organic matter-A review. Chemosphere 55:319-331.

Sochaczewski L, Tych W, Davison B, Zhang H. 2007. 2D DGT induced fluxes in sediments and soils (2D DIFS). Environ Model Softw 22:14-23.

Ullrich SM, Tanton TW, Abdrashitova SA. 2001. Mercury in the aquatic environment: A review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241-293.

Zhang H, Lombi E, Smolders E, McGrath S. 2004. Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin. Environ Sci Technol 38:3608-3613.

Zhang H, Zhao FJ, Sun B, Davison W, McGrath SP. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602-2607.

Zverina O, Coufalik P, Komarek J, Gadas P, Sysalova J. 2014. Mercury associated with size-fractionated urban particulate matter: Three years of sampling in Prague, Czech Republic. Chemical Papers 68:197-202.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...