Comprehensive Characterization of Secondary Metabolites from Colebrookea oppositifolia (Smith) Leaves from Nepal and Assessment of Cytotoxic Effect and Anti-Nf-κB and AP-1 Activities In Vitro

. 2020 Jul 11 ; 21 (14) : . [epub] 20200711

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32664524

Here we report the comprehensive characterization of the secondary metabolites from the leaves of Colebrookea oppositifolia Smith, a species used as medicinal plant in the traditional medicine of Nepal. Phytochemical screening of bioactives was performed using an integrated LC-MSn and high resolution MS (Mass Spectrometry) approach. Forty-three compounds were tentatively identified, mainly aglyconic and glycosilated flavonoids and phenolic acids, as well as other bioactives such as coumarins and terpenes were detected. Furthermore, the NF-κB and AP-1 inhibitory activity of C. oppositifolia extract were evaluated, as well as its cytotoxicity against THP-1 cells, in order to assess the potential use of this herb as a source of anti-inflammatory and cytotoxic compounds. The results so far obtained indicate that C. oppositifolia leaves extract could significantly reduce the viability of THP-1 cells (IC50 = 6.2 ± 1.2 µg/mL), as well as the activation of both NF-κB and AP-1 at the concentration of 2 μg/mL. Our results indicate that Nepalese C. oppositifolia is a valuable source of anti-inflammatory and cytotoxic compounds. The phytochemical composition reported here can partially justify the traditional uses of C. oppositifolia in Nepal, especially in the treatment of inflammatory diseases, although further research will be needed to assess the full potential of this species.

Zobrazit více v PubMed

Yadav D.K. Pharmacognostical, Phytochemical and Pharmacological profile of Colebrookea oppositifolia Smith. J. Drug Deliv. Ther. 2019;9:233–237. doi: 10.22270/jddt.v9i6-s.3745. DOI

Hansen B., Grierson A.J.C., Long D.G. Flora of Buthan. Including a record of plants from Sikkim. Nord. J. Bot. 1989;8:584. doi: 10.1111/j.1756-1051.1989.tb01732.x. DOI

Joshi A.R., Joshi K. Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. J. Ethnopharmacol. 2000;73:175–183. doi: 10.1016/S0378-8741(00)00301-9. PubMed DOI

Acharya K.P., Acharya M. Traditional knowledge on medicinal plants used for the treatment of livestock diseases in Sardikhola VDC, Kaski, Nepal. J. Med. Plants Res. 2010;4:235–239.

Viswanatha G.L., Venkataranganna M.V., Prasad N.B.L., Hanumanthappa S. Chemical characterization and cerebroprotective effect of methanolic root extract of Colebrookea oppositifolia in rats. J. Ethnopharmacol. 2018;223:63–75. doi: 10.1016/j.jep.2018.05.009. PubMed DOI

Madhavan V., Yadav D.K., Gurudeva M., Yoganarasimhan S.> Pharmacognostical studies on the leaves of Colebrookea oppositifolia Smith. Asian J. Trad. Med. 2011;6:134–144.

Yang F., Li X.C., Wang H.Q., Yang C.R. Flavonoid glycosides from Colebrookea oppositifolia. Phytochemistry. 1996;42:867–869. doi: 10.1016/0031-9422(95)00975-2. DOI

Riaz T., Abbasi M.A., Shahzadi T., Aziz-ur-Rehman, Siddiqui S.Z., Ajaib M. Colebrookia oppositifolia: A valuable source for natural antioxidants. J. Med. Plants Res. 2011;5:4180–4187.

Viswanatha G.L., Venkataranganna M.V., Prasad N.B.L. Ameliorative potential of Colebrookea oppositifolia methanolic root extract against experimental models of epilepsy: Possible role of GABA mediated mechanism. Biomed. Pharmacother. 2017;90:455–465. doi: 10.1016/j.biopha.2017.03.078. PubMed DOI

Gupta R.S., Yadav R.K., Dixit V.P., Dobhal M.P. Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia. 2001;42:236–245. doi: 10.1016/S0367-326X(00)00311-7. PubMed DOI

Panda S.K., Padhi L., Leyssen P., Liu M., Neyts J., Luyten W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front. Pharmacol. 2017;8:658. doi: 10.3389/fphar.2017.00658. PubMed DOI PMC

Chinchansure A., Arkile M., Shinde D., Sarkar D., Joshi S. A New Dinor-cis-Labdane Diterpene and Flavonoids with Antimycobacterium Activity from Colebrookea oppositifolia. Planta Med. Lett. 2016;3:e20–e24. doi: 10.1055/s-0042-102200. DOI

Ali I., Sharma P., Suri K.A., Satti N.K., Dutt P., Afrin F., Khan I.A. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J. Med. Microbiol. 2011;60:1326–1336. doi: 10.1099/jmm.0.031906-0. PubMed DOI

Khullar M., Sharma A., Wani A., Sharma N., Sharma N., Chandan B.K., Kumar A., Ahmed Z. Acteoside ameliorates inflammatory responses through NFkB pathway in alcohol induced hepatic damage. Int. Immunopharmacol. 2019;69:109–117. doi: 10.1016/j.intimp.2019.01.020. PubMed DOI

Peron G., Hošek J., Rajbhandary S., Pant D.R., Dall’Acqua S. LC-MSn and HR-MS characterization of secondary metabolites from Hypericum japonicum Thunb. ex Murray from Nepalese Himalayan region and assessment of cytotoxic effect and inhibition of NF-κB and AP-1 transcription factors in vitro. J. Pharm. Biomed. Anal. 2019;174:663–673. doi: 10.1016/j.jpba.2019.06.042. PubMed DOI

Shrestha S.S., Sut S., Di Marco S.B., Zengin G., Gandin V., De Franco M., Pant D.R., Mahomoodally M.F., Dall’Acqua S., Rajbhandary S. Phytochemical fingerprinting and in vitro bioassays of the ethnomedicinal fern tectaria coadunata (J. Smith) C. Christensen from Central Nepal. Molecules. 2019;24:4457. doi: 10.3390/molecules24244457. PubMed DOI PMC

Shrestha S.S., Sut S., Ferrarese I., Di Marco S.B., Zengin G., de Franco M., Pant D.R., Mahomoodally M.F., Ferri N., Biancorosso N., et al. Himalayan nettle girardinia diversifolia as a candidate ingredient for pharmaceutical and nutraceutical applications-phytochemical analysis and in vitro bioassays. Molecules. 2020;25:1563. doi: 10.3390/molecules25071563. PubMed DOI PMC

Bost J., Maroon A., Maroon J. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010;1:80. doi: 10.4103/2152-7806.73804. PubMed DOI PMC

Seca A.M.L., Pinto D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018;19:263. doi: 10.3390/ijms19010263. PubMed DOI PMC

Akhtar N., Ihsan-ul-Haq, Mirza B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. 2018;11:1223–1235. doi: 10.1016/j.arabjc.2015.01.013. DOI

Mitreski I., Stanoeva J.P., Stefova M., Stefkov G., Kulevanova S. Polyphenols in representative teucrium species in the flora of R. Macedonia: LC/DAD/ESI-MSn profile and content. Nat. Prod. Commun. 2014;9:175–180. doi: 10.1177/1934578X1400900211. PubMed DOI

Li S., Lin Z., Jiang H., Tong L., Wang H., Chen S. Rapid Identification and Assignation of the Active Ingredients in Fufang Banbianlian Injection Using HPLC-DAD-ESI-IT-TOF-MS. J. Chromatogr. Sci. 2016;54:1225–1237. doi: 10.1093/chromsci/bmw055. PubMed DOI

Singh B., Jain S.K., Bharate S.B., Kushwaha M., Gupta A.P., Vishwakarma R.A. Simultaneous quantification of five bioactive flavonoids in high altitude plant Actinocarya tibetica by LC-ESI-MS/MS. J. AOAC Int. 2015;98:907–912. doi: 10.5740/jaoacint.14-270. PubMed DOI

Martucci M.E.P., De Vos R.C.H., Carollo C.A., Gobbo-Neto L. Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia Schreb. PLoS ONE. 2014;9:e93149. doi: 10.1371/journal.pone.0093149. PubMed DOI PMC

Kang J., Price W.E., Ashton J., Tapsell L.C., Johnson S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016;211:215–226. doi: 10.1016/j.foodchem.2016.05.052. PubMed DOI

Chen G., Li X., Saleri F., Guo M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules. 2016;21:1275. doi: 10.3390/molecules21101275. PubMed DOI PMC

Barros L., Dueñas M., Dias M.I., Sousa M.J., Santos-Buelga C., Ferreira I.C.F.R. Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem. 2012;132:841–848. doi: 10.1016/j.foodchem.2011.11.048. DOI

Gobbo-Neto L., Lopes N.P. Online identification of chlorogenic acids, sesquiterpene lactones, and flavonoids in the Brazilian arnica Lychnophora ericoides Mart. (Asteraceae) leaves by HPLC-DAD-MS and HPLC-DAD-MS/MS and a validated HPLC-DAD method for their simultaneous analysis. J. Agric. Food Chem. 2008;56:1193–1204. doi: 10.1021/jf072812l. PubMed DOI

Spínola V., Castilho P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro) Phytochemistry. 2017;143:29–35. doi: 10.1016/j.phytochem.2017.07.006. PubMed DOI

El-Hagrassy A.M., Elkhateeb A., Hussein S.R., Abdel-Hameed E.S.S., Marzouk M.M. LC-ESI-MS profile, antioxidant activity and cytotoxic screening of Oligomeris linifolia (Vahl) Macbr. (Resedaceae) J. Appl. Pharm. Sci. 2017;7:43–47. doi: 10.7324/JAPS.2017.70807. DOI

Ibrahima R.M., El-Halawany A.M., Saleh D.O., El Naggar E.M.B., EL-Shabrawy A.E.R.O., El-Hawary S.S. HPLC-DAD-MS/MS profiling of phenolics from securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Braz. J. Pharmacogn. 2015;25:134–141. doi: 10.1016/j.bjp.2015.02.008. DOI

Ghouti D., Rached W., Abdallah M., Pires T.C.S.P., Calhelha R.C., Alves M.J., Abderrahmane L.H., Barros L., Ferreira I.C.F.R. Phenolic profile and in vitro bioactive potential of Saharan Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food Funct. 2018;9:4664–4672. doi: 10.1039/C8FO01392F. PubMed DOI

Sun J., Chen P. A flow-injection mass spectrometry fingerprinting method for authentication and quality assessment of Scutellaria lateriflora-based dietary supplements. Anal. Bioanal. Chem. 2011;401:1577–1584. doi: 10.1007/s00216-011-5246-2. PubMed DOI

Pacifico S., Galasso S., Piccolella S., Kretschmer N., Pan S.P., Nocera P., Lettieri A., Bauer R., Monaco P. Winter wild fennel leaves as a source of anti-inflammatory and antioxidant polyphenols. Arab. J. Chem. 2018;11:513–524. doi: 10.1016/j.arabjc.2015.06.026. DOI

Grzegorczyk-Karolak I., Kiss A.K. Determination of the phenolic profile and antioxidant properties of Salvia viridis L. Shoots: A comparison of aqueous and hydroethanolic extracts. Molecules. 2018;23:1468. doi: 10.3390/molecules23061468. PubMed DOI PMC

Sanz M., De Simón B.F., Cadahía E., Esteruelas E., Muñoz A.M., Hernández T., Estrella I., Pinto E. LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. J. Mass Spectrom. 2012;47:905–918. doi: 10.1002/jms.3040. PubMed DOI

Cerulli A., Napolitano A., Masullo M., Hošek J., Pizza C., Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res. Int. 2020;129:108787. doi: 10.1016/j.foodres.2019.108787. PubMed DOI

Abu-Reidah I.M., Ali-Shtayeh M.S., Jamous R.M., Arráez-Román D., Segura-Carretero A. HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015;166:179–191. doi: 10.1016/j.foodchem.2014.06.011. PubMed DOI

Rodríguez-Pérez C., Gómez-Caravaca A.M., Guerra-Hernández E., Cerretani L., García-Villanova B., Verardo V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018;112:390–399. doi: 10.1016/j.foodres.2018.06.060. PubMed DOI

Marzouk M.M., Hussein S.R., Elkhateeb A., El-shabrawy M., Abdel-Hameed E.S.S., Kawashty S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018;8:116–122. doi: 10.7324/JAPS.2018.8816. DOI

Li H., Peng S.Y., Yang D.P., Bai B., Zhu L.P., Mu C.Y., Tian Y.J., Wang D.M., Zhao Z.M. Enantiomeric Neolignans and a Sesquiterpene from Solanum erianthum and Their Absolute Configuration Assignment. Chirality. 2016;28:259–263. doi: 10.1002/chir.22571. PubMed DOI

Shi P.B., Yue T.X., Ai L.L., Cheng Y.F., Meng J.F., Li M.H., Zhang Z.W. Phenolic compound profiles in grape skins of Cabernet Sauvignon, Merlot, Syrah and Marselan Cultivated in the Shacheng Area (China) S. Afr. J. Enol. Vitic. 2016;37:132–138. doi: 10.21548/37-2-898. DOI

Mukherjee P.K., Mukherjee K., Hermans-Lokkerbol A.C.J., Verpoorte R., Suresh B. Flavonoid Content of Eupatorium glandulosum and Coolebroke oppositifolia. J. Nat. Remedies. 2001;1:24. doi: 10.18311/jnr/2001/56. DOI

Verma S.K., Pareek D., Singhal R., Chauhan A.K., Parashar P., Dobhal M.P. Ferulic acid ester from colebrookea oppositifolia. Indian J. Chem. B. 2012;51:1502–1503.

Ansari S., Dobhal M.P., Tyagi R.P., Joshi B.C., Barar F.S. Chemical investigation and pharmacological screening of the roots of colebrookia oppositifolia Smith. Pharmazie. 1982;37:70. PubMed

Alipieva K., Korkina L., Orhan I.E., Georgiev M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014;32:1065–1076. doi: 10.1016/j.biotechadv.2014.07.001. PubMed DOI

Zürn M., Tóth G., Kraszni M., Sólyomváry A., Mucsi Z., Deme R., Rózsa B., Fodor B., Molnár-Perl I., Horváti K., et al. Galls of European Fraxinus trees as new and abundant sources of valuable phenylethanoid and coumarin glycosides. Ind. Crop Prod. 2019;139:111517. doi: 10.1016/j.indcrop.2019.111517. DOI

Pesce M., Franceschelli S., Ferrone A., De Lutiis M.A., Patruno A., Grilli A., Felaco M., Speranza L. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line. J. Cell. Mol. Med. 2015;19:1548–1556. doi: 10.1111/jcmm.12524. PubMed DOI PMC

Ma H., Qin S., Zhao S. Osteoarthritis is Prevented in Rats by Verbascoside via Nuclear Factor kappa B (NF-kB) Pathway Downregulation. Med. Sci. Monit. 2020;26:e921276. doi: 10.12659/MSM.921276. PubMed DOI PMC

Ye N., Ding Y., Wild C., Shen Q., Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1) J. Med. Chem. 2014;57:6930–6948. doi: 10.1021/jm5004733. PubMed DOI PMC

Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC

Freitas R.H.C.N., Fraga C.A.M. NF-κB-IKKβ Pathway as a Target for Drug Development: Realities, Challenges and Perspectives. Curr. Drug Targets. 2018;19:1933–1942. doi: 10.2174/1389450119666180219120534. PubMed DOI

Medzhitov R., Horng T. Transcriptional Control of the Inflammatory Response. Nat. Rev. Immunol. 2009;9:692–703. doi: 10.1038/nri2634. PubMed DOI

Ha S.K., Moon E., Kim S.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci. Lett. 2010;485:143–147. doi: 10.1016/j.neulet.2010.08.064. PubMed DOI

Yang Y., Gong X.B., Huang L.G., Wang Z.X., Wan R.Z., Zhang P., Zhang Q.Y., Chen Z., Zhang B.S. Diosmetin exerts anti-oxidative, anti-inflammatory and antiapoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget. 2017;8:30723–30733. doi: 10.18632/oncotarget.15413. PubMed DOI PMC

Chen L., Teng H., Jia Z., Battino M., Miron A., Yu Z., Cao H., Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit. Rev. Food Sci. Nutr. 2018;58:2908–2924. doi: 10.1080/10408398.2017.1345853. PubMed DOI

Tan C., Meng F., Reece E.A., Zhao Z. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice. Am. J. Obstet. Gynecol. 2018;219:197.e1–197.e8. doi: 10.1016/j.ajog.2018.04.045. PubMed DOI PMC

Sun L.R., Zhou W., Zhang H.M., Guo Q.S., Yang W., Li B.J., Sun Z.H., Gao S.H., Cui R.J. Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Front. Oncol. 2019;9:1153. doi: 10.3389/fonc.2019.01153. PubMed DOI PMC

Åkesson C., Lindgren H., Pero R.W., Leanderson T., Ivars F. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100®. Int. Immunopharmacol. 2005;5:219–229. doi: 10.1016/j.intimp.2004.09.028. PubMed DOI

Nagasaka R., Chotimarkorn C., Shafiqul I.M., Hori M., Ozaki H., Ushio H. Anti-inflammatory effects of hydroxycinnamic acid derivatives. Biochem. Biophys. Res. Commun. 2007;358:615–619. doi: 10.1016/j.bbrc.2007.04.178. PubMed DOI

Liang N., Kitts D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2016;8:16. doi: 10.3390/nu8010016. PubMed DOI PMC

Ouyang L., Dan Y., Shao Z., Yang S., Yang C., Liu G., Zhou W., Duan D. Effect of umbelliferone on adjuvant-induced arthritis in rats by MAPK/NF-κB pathway. Drug Des. Devel. Ther. 2019;13:1163–1170. doi: 10.2147/DDDT.S190155. PubMed DOI PMC

Li J., Yin P., Gong P., Lv A., Zhang Z., Liu F. 8-Methoxypsoralen protects bovine mammary epithelial cells against lipopolysaccharide-induced inflammatory injury via suppressing JAK/STAT and NF-κB pathway. Microbiol. Immunol. 2019;63:427–437. doi: 10.1111/1348-0421.12730. PubMed DOI

Ho M.L., Chen P.N., Chu S.C., Kuo D.Y., Kuo W.H., Chen J.Y., Hsieh Y.S. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr. Cancer. 2010;11:628–639. doi: 10.1080/01635580903441261. PubMed DOI

Ndhlala A.R., Ghebrehiwot H.M., Ncube B., Aremu A.O., Gruz J., Šubrtová M., Doležal K., du Plooy C.P., Abdelgadir H.A., Van Staden J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa. Front. Pharmacol. 2015;6:274. doi: 10.3389/fphar.2015.00274. PubMed DOI PMC

D’Acquisto F., May M.J., Ghosh S. Inhibition of Nuclear Factor Kappa B (NF-B): An Emerging Theme in Anti-Inflammatory Therapies. Mol. Interv. 2002;2:22–35. doi: 10.1124/mi.2.1.22. PubMed DOI

Mainardi T., Kapoor S., Bielory L. Complementary and alternative medicine: Herbs, phytochemicals and vitamins and their immunologic effects. J. Allergy Clin. Immunol. 2009;123:283–294. doi: 10.1016/j.jaci.2008.12.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...