Comprehensive Characterization of Secondary Metabolites from Colebrookea oppositifolia (Smith) Leaves from Nepal and Assessment of Cytotoxic Effect and Anti-Nf-κB and AP-1 Activities In Vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32664524
PubMed Central
PMC7402322
DOI
10.3390/ijms21144897
PII: ijms21144897
Knihovny.cz E-zdroje
- Klíčová slova
- Colebrookea oppositifolia, anti-AP-1, anti-NF-κB, cytotoxic activity, secondary metabolites,
- MeSH
- antiflogistika izolace a purifikace farmakologie toxicita MeSH
- chromatografie kapalinová MeSH
- flavonoidy analýza izolace a purifikace MeSH
- hluchavkovité metabolismus MeSH
- hmotnostní spektrometrie MeSH
- hydroxybenzoáty analýza izolace a purifikace MeSH
- léčivé rostliny metabolismus MeSH
- lidé MeSH
- listy rostlin metabolismus MeSH
- metabolom MeSH
- methanol MeSH
- NF-kappa B antagonisté a inhibitory MeSH
- rostlinné extrakty chemie izolace a purifikace farmakologie toxicita MeSH
- THP-1 buňky MeSH
- transkripční faktor AP-1 antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nepál MeSH
- Názvy látek
- antiflogistika MeSH
- flavonoidy MeSH
- hydroxybenzoáty MeSH
- methanol MeSH
- NF-kappa B MeSH
- phenolic acid MeSH Prohlížeč
- rostlinné extrakty MeSH
- transkripční faktor AP-1 MeSH
Here we report the comprehensive characterization of the secondary metabolites from the leaves of Colebrookea oppositifolia Smith, a species used as medicinal plant in the traditional medicine of Nepal. Phytochemical screening of bioactives was performed using an integrated LC-MSn and high resolution MS (Mass Spectrometry) approach. Forty-three compounds were tentatively identified, mainly aglyconic and glycosilated flavonoids and phenolic acids, as well as other bioactives such as coumarins and terpenes were detected. Furthermore, the NF-κB and AP-1 inhibitory activity of C. oppositifolia extract were evaluated, as well as its cytotoxicity against THP-1 cells, in order to assess the potential use of this herb as a source of anti-inflammatory and cytotoxic compounds. The results so far obtained indicate that C. oppositifolia leaves extract could significantly reduce the viability of THP-1 cells (IC50 = 6.2 ± 1.2 µg/mL), as well as the activation of both NF-κB and AP-1 at the concentration of 2 μg/mL. Our results indicate that Nepalese C. oppositifolia is a valuable source of anti-inflammatory and cytotoxic compounds. The phytochemical composition reported here can partially justify the traditional uses of C. oppositifolia in Nepal, especially in the treatment of inflammatory diseases, although further research will be needed to assess the full potential of this species.
Zobrazit více v PubMed
Yadav D.K. Pharmacognostical, Phytochemical and Pharmacological profile of Colebrookea oppositifolia Smith. J. Drug Deliv. Ther. 2019;9:233–237. doi: 10.22270/jddt.v9i6-s.3745. DOI
Hansen B., Grierson A.J.C., Long D.G. Flora of Buthan. Including a record of plants from Sikkim. Nord. J. Bot. 1989;8:584. doi: 10.1111/j.1756-1051.1989.tb01732.x. DOI
Joshi A.R., Joshi K. Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area, Nepal. J. Ethnopharmacol. 2000;73:175–183. doi: 10.1016/S0378-8741(00)00301-9. PubMed DOI
Acharya K.P., Acharya M. Traditional knowledge on medicinal plants used for the treatment of livestock diseases in Sardikhola VDC, Kaski, Nepal. J. Med. Plants Res. 2010;4:235–239.
Viswanatha G.L., Venkataranganna M.V., Prasad N.B.L., Hanumanthappa S. Chemical characterization and cerebroprotective effect of methanolic root extract of Colebrookea oppositifolia in rats. J. Ethnopharmacol. 2018;223:63–75. doi: 10.1016/j.jep.2018.05.009. PubMed DOI
Madhavan V., Yadav D.K., Gurudeva M., Yoganarasimhan S.> Pharmacognostical studies on the leaves of Colebrookea oppositifolia Smith. Asian J. Trad. Med. 2011;6:134–144.
Yang F., Li X.C., Wang H.Q., Yang C.R. Flavonoid glycosides from Colebrookea oppositifolia. Phytochemistry. 1996;42:867–869. doi: 10.1016/0031-9422(95)00975-2. DOI
Riaz T., Abbasi M.A., Shahzadi T., Aziz-ur-Rehman, Siddiqui S.Z., Ajaib M. Colebrookia oppositifolia: A valuable source for natural antioxidants. J. Med. Plants Res. 2011;5:4180–4187.
Viswanatha G.L., Venkataranganna M.V., Prasad N.B.L. Ameliorative potential of Colebrookea oppositifolia methanolic root extract against experimental models of epilepsy: Possible role of GABA mediated mechanism. Biomed. Pharmacother. 2017;90:455–465. doi: 10.1016/j.biopha.2017.03.078. PubMed DOI
Gupta R.S., Yadav R.K., Dixit V.P., Dobhal M.P. Antifertility studies of Colebrookia oppositifolia leaf extract in male rats with special reference to testicular cell population dynamics. Fitoterapia. 2001;42:236–245. doi: 10.1016/S0367-326X(00)00311-7. PubMed DOI
Panda S.K., Padhi L., Leyssen P., Liu M., Neyts J., Luyten W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front. Pharmacol. 2017;8:658. doi: 10.3389/fphar.2017.00658. PubMed DOI PMC
Chinchansure A., Arkile M., Shinde D., Sarkar D., Joshi S. A New Dinor-cis-Labdane Diterpene and Flavonoids with Antimycobacterium Activity from Colebrookea oppositifolia. Planta Med. Lett. 2016;3:e20–e24. doi: 10.1055/s-0042-102200. DOI
Ali I., Sharma P., Suri K.A., Satti N.K., Dutt P., Afrin F., Khan I.A. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia. J. Med. Microbiol. 2011;60:1326–1336. doi: 10.1099/jmm.0.031906-0. PubMed DOI
Khullar M., Sharma A., Wani A., Sharma N., Sharma N., Chandan B.K., Kumar A., Ahmed Z. Acteoside ameliorates inflammatory responses through NFkB pathway in alcohol induced hepatic damage. Int. Immunopharmacol. 2019;69:109–117. doi: 10.1016/j.intimp.2019.01.020. PubMed DOI
Peron G., Hošek J., Rajbhandary S., Pant D.R., Dall’Acqua S. LC-MSn and HR-MS characterization of secondary metabolites from Hypericum japonicum Thunb. ex Murray from Nepalese Himalayan region and assessment of cytotoxic effect and inhibition of NF-κB and AP-1 transcription factors in vitro. J. Pharm. Biomed. Anal. 2019;174:663–673. doi: 10.1016/j.jpba.2019.06.042. PubMed DOI
Shrestha S.S., Sut S., Di Marco S.B., Zengin G., Gandin V., De Franco M., Pant D.R., Mahomoodally M.F., Dall’Acqua S., Rajbhandary S. Phytochemical fingerprinting and in vitro bioassays of the ethnomedicinal fern tectaria coadunata (J. Smith) C. Christensen from Central Nepal. Molecules. 2019;24:4457. doi: 10.3390/molecules24244457. PubMed DOI PMC
Shrestha S.S., Sut S., Ferrarese I., Di Marco S.B., Zengin G., de Franco M., Pant D.R., Mahomoodally M.F., Ferri N., Biancorosso N., et al. Himalayan nettle girardinia diversifolia as a candidate ingredient for pharmaceutical and nutraceutical applications-phytochemical analysis and in vitro bioassays. Molecules. 2020;25:1563. doi: 10.3390/molecules25071563. PubMed DOI PMC
Bost J., Maroon A., Maroon J. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010;1:80. doi: 10.4103/2152-7806.73804. PubMed DOI PMC
Seca A.M.L., Pinto D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018;19:263. doi: 10.3390/ijms19010263. PubMed DOI PMC
Akhtar N., Ihsan-ul-Haq, Mirza B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. 2018;11:1223–1235. doi: 10.1016/j.arabjc.2015.01.013. DOI
Mitreski I., Stanoeva J.P., Stefova M., Stefkov G., Kulevanova S. Polyphenols in representative teucrium species in the flora of R. Macedonia: LC/DAD/ESI-MSn profile and content. Nat. Prod. Commun. 2014;9:175–180. doi: 10.1177/1934578X1400900211. PubMed DOI
Li S., Lin Z., Jiang H., Tong L., Wang H., Chen S. Rapid Identification and Assignation of the Active Ingredients in Fufang Banbianlian Injection Using HPLC-DAD-ESI-IT-TOF-MS. J. Chromatogr. Sci. 2016;54:1225–1237. doi: 10.1093/chromsci/bmw055. PubMed DOI
Singh B., Jain S.K., Bharate S.B., Kushwaha M., Gupta A.P., Vishwakarma R.A. Simultaneous quantification of five bioactive flavonoids in high altitude plant Actinocarya tibetica by LC-ESI-MS/MS. J. AOAC Int. 2015;98:907–912. doi: 10.5740/jaoacint.14-270. PubMed DOI
Martucci M.E.P., De Vos R.C.H., Carollo C.A., Gobbo-Neto L. Metabolomics as a potential chemotaxonomical tool: Application in the genus Vernonia Schreb. PLoS ONE. 2014;9:e93149. doi: 10.1371/journal.pone.0093149. PubMed DOI PMC
Kang J., Price W.E., Ashton J., Tapsell L.C., Johnson S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016;211:215–226. doi: 10.1016/j.foodchem.2016.05.052. PubMed DOI
Chen G., Li X., Saleri F., Guo M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules. 2016;21:1275. doi: 10.3390/molecules21101275. PubMed DOI PMC
Barros L., Dueñas M., Dias M.I., Sousa M.J., Santos-Buelga C., Ferreira I.C.F.R. Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem. 2012;132:841–848. doi: 10.1016/j.foodchem.2011.11.048. DOI
Gobbo-Neto L., Lopes N.P. Online identification of chlorogenic acids, sesquiterpene lactones, and flavonoids in the Brazilian arnica Lychnophora ericoides Mart. (Asteraceae) leaves by HPLC-DAD-MS and HPLC-DAD-MS/MS and a validated HPLC-DAD method for their simultaneous analysis. J. Agric. Food Chem. 2008;56:1193–1204. doi: 10.1021/jf072812l. PubMed DOI
Spínola V., Castilho P.C. Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro) Phytochemistry. 2017;143:29–35. doi: 10.1016/j.phytochem.2017.07.006. PubMed DOI
El-Hagrassy A.M., Elkhateeb A., Hussein S.R., Abdel-Hameed E.S.S., Marzouk M.M. LC-ESI-MS profile, antioxidant activity and cytotoxic screening of Oligomeris linifolia (Vahl) Macbr. (Resedaceae) J. Appl. Pharm. Sci. 2017;7:43–47. doi: 10.7324/JAPS.2017.70807. DOI
Ibrahima R.M., El-Halawany A.M., Saleh D.O., El Naggar E.M.B., EL-Shabrawy A.E.R.O., El-Hawary S.S. HPLC-DAD-MS/MS profiling of phenolics from securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Braz. J. Pharmacogn. 2015;25:134–141. doi: 10.1016/j.bjp.2015.02.008. DOI
Ghouti D., Rached W., Abdallah M., Pires T.C.S.P., Calhelha R.C., Alves M.J., Abderrahmane L.H., Barros L., Ferreira I.C.F.R. Phenolic profile and in vitro bioactive potential of Saharan Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food Funct. 2018;9:4664–4672. doi: 10.1039/C8FO01392F. PubMed DOI
Sun J., Chen P. A flow-injection mass spectrometry fingerprinting method for authentication and quality assessment of Scutellaria lateriflora-based dietary supplements. Anal. Bioanal. Chem. 2011;401:1577–1584. doi: 10.1007/s00216-011-5246-2. PubMed DOI
Pacifico S., Galasso S., Piccolella S., Kretschmer N., Pan S.P., Nocera P., Lettieri A., Bauer R., Monaco P. Winter wild fennel leaves as a source of anti-inflammatory and antioxidant polyphenols. Arab. J. Chem. 2018;11:513–524. doi: 10.1016/j.arabjc.2015.06.026. DOI
Grzegorczyk-Karolak I., Kiss A.K. Determination of the phenolic profile and antioxidant properties of Salvia viridis L. Shoots: A comparison of aqueous and hydroethanolic extracts. Molecules. 2018;23:1468. doi: 10.3390/molecules23061468. PubMed DOI PMC
Sanz M., De Simón B.F., Cadahía E., Esteruelas E., Muñoz A.M., Hernández T., Estrella I., Pinto E. LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. J. Mass Spectrom. 2012;47:905–918. doi: 10.1002/jms.3040. PubMed DOI
Cerulli A., Napolitano A., Masullo M., Hošek J., Pizza C., Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res. Int. 2020;129:108787. doi: 10.1016/j.foodres.2019.108787. PubMed DOI
Abu-Reidah I.M., Ali-Shtayeh M.S., Jamous R.M., Arráez-Román D., Segura-Carretero A. HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015;166:179–191. doi: 10.1016/j.foodchem.2014.06.011. PubMed DOI
Rodríguez-Pérez C., Gómez-Caravaca A.M., Guerra-Hernández E., Cerretani L., García-Villanova B., Verardo V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves by HPLC-ESI-QTOF-MS. Food Res. Int. 2018;112:390–399. doi: 10.1016/j.foodres.2018.06.060. PubMed DOI
Marzouk M.M., Hussein S.R., Elkhateeb A., El-shabrawy M., Abdel-Hameed E.S.S., Kawashty S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018;8:116–122. doi: 10.7324/JAPS.2018.8816. DOI
Li H., Peng S.Y., Yang D.P., Bai B., Zhu L.P., Mu C.Y., Tian Y.J., Wang D.M., Zhao Z.M. Enantiomeric Neolignans and a Sesquiterpene from Solanum erianthum and Their Absolute Configuration Assignment. Chirality. 2016;28:259–263. doi: 10.1002/chir.22571. PubMed DOI
Shi P.B., Yue T.X., Ai L.L., Cheng Y.F., Meng J.F., Li M.H., Zhang Z.W. Phenolic compound profiles in grape skins of Cabernet Sauvignon, Merlot, Syrah and Marselan Cultivated in the Shacheng Area (China) S. Afr. J. Enol. Vitic. 2016;37:132–138. doi: 10.21548/37-2-898. DOI
Mukherjee P.K., Mukherjee K., Hermans-Lokkerbol A.C.J., Verpoorte R., Suresh B. Flavonoid Content of Eupatorium glandulosum and Coolebroke oppositifolia. J. Nat. Remedies. 2001;1:24. doi: 10.18311/jnr/2001/56. DOI
Verma S.K., Pareek D., Singhal R., Chauhan A.K., Parashar P., Dobhal M.P. Ferulic acid ester from colebrookea oppositifolia. Indian J. Chem. B. 2012;51:1502–1503.
Ansari S., Dobhal M.P., Tyagi R.P., Joshi B.C., Barar F.S. Chemical investigation and pharmacological screening of the roots of colebrookia oppositifolia Smith. Pharmazie. 1982;37:70. PubMed
Alipieva K., Korkina L., Orhan I.E., Georgiev M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014;32:1065–1076. doi: 10.1016/j.biotechadv.2014.07.001. PubMed DOI
Zürn M., Tóth G., Kraszni M., Sólyomváry A., Mucsi Z., Deme R., Rózsa B., Fodor B., Molnár-Perl I., Horváti K., et al. Galls of European Fraxinus trees as new and abundant sources of valuable phenylethanoid and coumarin glycosides. Ind. Crop Prod. 2019;139:111517. doi: 10.1016/j.indcrop.2019.111517. DOI
Pesce M., Franceschelli S., Ferrone A., De Lutiis M.A., Patruno A., Grilli A., Felaco M., Speranza L. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line. J. Cell. Mol. Med. 2015;19:1548–1556. doi: 10.1111/jcmm.12524. PubMed DOI PMC
Ma H., Qin S., Zhao S. Osteoarthritis is Prevented in Rats by Verbascoside via Nuclear Factor kappa B (NF-kB) Pathway Downregulation. Med. Sci. Monit. 2020;26:e921276. doi: 10.12659/MSM.921276. PubMed DOI PMC
Ye N., Ding Y., Wild C., Shen Q., Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1) J. Med. Chem. 2014;57:6930–6948. doi: 10.1021/jm5004733. PubMed DOI PMC
Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Freitas R.H.C.N., Fraga C.A.M. NF-κB-IKKβ Pathway as a Target for Drug Development: Realities, Challenges and Perspectives. Curr. Drug Targets. 2018;19:1933–1942. doi: 10.2174/1389450119666180219120534. PubMed DOI
Medzhitov R., Horng T. Transcriptional Control of the Inflammatory Response. Nat. Rev. Immunol. 2009;9:692–703. doi: 10.1038/nri2634. PubMed DOI
Ha S.K., Moon E., Kim S.Y. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci. Lett. 2010;485:143–147. doi: 10.1016/j.neulet.2010.08.064. PubMed DOI
Yang Y., Gong X.B., Huang L.G., Wang Z.X., Wan R.Z., Zhang P., Zhang Q.Y., Chen Z., Zhang B.S. Diosmetin exerts anti-oxidative, anti-inflammatory and antiapoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget. 2017;8:30723–30733. doi: 10.18632/oncotarget.15413. PubMed DOI PMC
Chen L., Teng H., Jia Z., Battino M., Miron A., Yu Z., Cao H., Xiao J. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit. Rev. Food Sci. Nutr. 2018;58:2908–2924. doi: 10.1080/10408398.2017.1345853. PubMed DOI
Tan C., Meng F., Reece E.A., Zhao Z. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice. Am. J. Obstet. Gynecol. 2018;219:197.e1–197.e8. doi: 10.1016/j.ajog.2018.04.045. PubMed DOI PMC
Sun L.R., Zhou W., Zhang H.M., Guo Q.S., Yang W., Li B.J., Sun Z.H., Gao S.H., Cui R.J. Modulation of Multiple Signaling Pathways of the Plant-Derived Natural Products in Cancer. Front. Oncol. 2019;9:1153. doi: 10.3389/fonc.2019.01153. PubMed DOI PMC
Åkesson C., Lindgren H., Pero R.W., Leanderson T., Ivars F. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100®. Int. Immunopharmacol. 2005;5:219–229. doi: 10.1016/j.intimp.2004.09.028. PubMed DOI
Nagasaka R., Chotimarkorn C., Shafiqul I.M., Hori M., Ozaki H., Ushio H. Anti-inflammatory effects of hydroxycinnamic acid derivatives. Biochem. Biophys. Res. Commun. 2007;358:615–619. doi: 10.1016/j.bbrc.2007.04.178. PubMed DOI
Liang N., Kitts D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2016;8:16. doi: 10.3390/nu8010016. PubMed DOI PMC
Ouyang L., Dan Y., Shao Z., Yang S., Yang C., Liu G., Zhou W., Duan D. Effect of umbelliferone on adjuvant-induced arthritis in rats by MAPK/NF-κB pathway. Drug Des. Devel. Ther. 2019;13:1163–1170. doi: 10.2147/DDDT.S190155. PubMed DOI PMC
Li J., Yin P., Gong P., Lv A., Zhang Z., Liu F. 8-Methoxypsoralen protects bovine mammary epithelial cells against lipopolysaccharide-induced inflammatory injury via suppressing JAK/STAT and NF-κB pathway. Microbiol. Immunol. 2019;63:427–437. doi: 10.1111/1348-0421.12730. PubMed DOI
Ho M.L., Chen P.N., Chu S.C., Kuo D.Y., Kuo W.H., Chen J.Y., Hsieh Y.S. Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutr. Cancer. 2010;11:628–639. doi: 10.1080/01635580903441261. PubMed DOI
Ndhlala A.R., Ghebrehiwot H.M., Ncube B., Aremu A.O., Gruz J., Šubrtová M., Doležal K., du Plooy C.P., Abdelgadir H.A., Van Staden J. Antimicrobial, anthelmintic activities and characterisation of functional phenolic acids of Achyranthes aspera Linn.: A medicinal plant used for the treatment of wounds and ringworm in east Africa. Front. Pharmacol. 2015;6:274. doi: 10.3389/fphar.2015.00274. PubMed DOI PMC
D’Acquisto F., May M.J., Ghosh S. Inhibition of Nuclear Factor Kappa B (NF-B): An Emerging Theme in Anti-Inflammatory Therapies. Mol. Interv. 2002;2:22–35. doi: 10.1124/mi.2.1.22. PubMed DOI
Mainardi T., Kapoor S., Bielory L. Complementary and alternative medicine: Herbs, phytochemicals and vitamins and their immunologic effects. J. Allergy Clin. Immunol. 2009;123:283–294. doi: 10.1016/j.jaci.2008.12.023. PubMed DOI