Light-Activated Carbon Monoxide Prodrugs Based on Bipyridyl Dicarbonyl Ruthenium(II) Complexes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
627113
FP7 People: Marie-Curie Actions
19-01438S
Czech Science Foundation
57448291
Deutscher Akademischer Austauschdienst
PubMed
32700815
PubMed Central
PMC7496190
DOI
10.1002/chem.202002139
Knihovny.cz E-zdroje
- Klíčová slova
- anti-apoptotic activity, anti-proliferative, cellular localisation, photoCORM, ruthenium(II),
- MeSH
- 2,2'-dipyridyl chemie MeSH
- HEK293 buňky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxid uhelnatý chemie MeSH
- prekurzory léčiv chemie účinky záření MeSH
- ruthenium chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2,2'-dipyridyl MeSH
- oxid uhelnatý MeSH
- prekurzory léčiv MeSH
- ruthenium MeSH
Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide-functionalised bipyridine scaffold (4-position) equipped with an alkyne functionality or a green-fluorescent BODIPY (boron-dipyrromethene) dye have been prepared and used to investigate their light-induced decarbonylation. UV/Vis, FTIR and 13 C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least-squares analysis (MCR-ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti-proliferative and anti-apoptotic activities. The BODIPY-labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria.
Zobrazit více v PubMed
Kourti M., Jiang W. G., Cai J., Oxid. Med. Cell Longev. 2017, 9326454; PubMed PMC
Mann B. E., Organometallics 2012, 31, 5728–5735;
Motterlini R., Otterbein L. E., Nat. Rev. Drug Discovery 2010, 9, 728–743; PubMed
Wegiel B., Hanto D. W., Otterbein L. E., Trends Mol. Med. 2013, 19, 3–11; PubMed PMC
Winburn I. C., Gunatunga K., McKernan R. D., Walker R. J., Sammut I. A., Harrison J. C., Basic Clin. Pharmacol. Toxicol. 2012, 111, 31–41; PubMed
Zobi F., Future Med. Chem. 2013, 5, 175–188; PubMed
Heinemann S. H., Hoshi T., Westerhausend M., Schiller A., Chem. Commun. 2014, 50, 3644–3660; PubMed PMC
Kautz A. C., Kunz P. C., Janiak C., Dalton Trans. 2016, 45, 18045–18063. PubMed
Antony L. A. P., Slanina T., Sebej P., Solomek T., Klan P., Org. Lett. 2013, 15, 4552–4555; PubMed
Ji X. Y., Wang B. H., Acc. Chem. Res. 2018, 51, 1377–1385; PubMed
Ji X. Y., Zhou C., Ji K. L., Aghoghovbia R. E., Pan Z. X., Chittavong V., Ke B. W., Wang B. H., Angew. Chem. Int. Ed. 2016, 55, 15846–15851; PubMed
Angew. Chem. 2016, 128, 16078–16083;
Peng P., Wang C. M., Shi Z., Johns V. K., Ma L. Y., Oyer J., Copik A., Igarashi R., Liao Y., Org. Biomol. Chem. 2013, 11, 6671–6674; PubMed
Popova M., Soboleva T., Ayad S., Benninghoff A. D., Berreau L. M., J. Am. Chem. Soc. 2018, 140, 9721–9729; PubMed PMC
Slanina T., Sebej P., Photochem. Photobiol. Sci. 2018, 17, 692–710; PubMed
Palao E., Slanina T., Muchova L., Solomek T., Vitek L., Klan P., J. Am. Chem. Soc. 2016, 138, 126–133; PubMed
Feng W. Y., Feng S. M., Feng G. Q., Chem. Commun. 2019, 55, 8987–8990. PubMed
Johnson T. R., Mann B. E., Clark J. E., Foresti R., Green C. J., Motterlini R., Angew. Chem. Int. Ed. 2003, 42, 3722–3729; PubMed
Angew. Chem. 2003, 115, 3850–3858;
Romao C. C., Blaettler W. A., Seixas J. D., Bernardes G. J. L., Chem. Soc. Rev. 2012, 41, 3571–3583; PubMed
Schatzschneider U., Br. J. Pharmacol. 2015, 172, 1638–1650; PubMed PMC
Mansour A. M., Shehab O. R., J. Photochem. Photobiol. A 2018, 364, 406–414;
Mansour A. M., Steiger C., Nagel C., Schatzschneider U., Eur. J. Inorg. Chem. 2019, 4572–4581.
Rimmer R. D., Pierri A. E., Ford P. C., Coord. Chem. Rev. 2012, 256, 1509–1519.
Motterlini R., Sawle P., Bains S., Hammad J., Alberto R., Foresti R., Green C. J., Faseb J. 2005, 19, 1–24; PubMed
Pitchumony T. S., Spingler B., Motterlini R., Alberto R., Chimia 2008, 62, 277–279;
Pitchumony T. S., Spingler B., Motterlini R., Alberto R., Org. Biomol. Chem. 2010, 8, 4849–4854. PubMed
Desmard M., Boczkowski J., Poderoso J., Motterlini R., Antioxid. Redox Signaling 2007, 9, 2139–2155; PubMed
Lancel S., Hassoun S. M., Favory R., Decoster B., Motterlini R., Neviere R., J. Pharmacol. Exp. Ther. 2009, 329, 641–648; PubMed
Seveso M., Vadori M., Bosio E., Fante F., Besenzon F., Ravarotto L., Bedendo S., Johnson T. R., Mann B. E., Motterlini R., Cozzi E., Ancona E., Am. J. Transplant. 2005, 5, 306–307;
Alberto R., Motterlini R., Dalton Trans. 2007, 1651–1660. PubMed
Chakraborty I., Carrington S. J., Mascharak P. K., Acc. Chem. Res. 2014, 47, 2603–2611; PubMed
Chakraborty I., Carrington S. J., Mascharak P. K., ChemMedChem 2014, 9, 1266–1274; PubMed
Ford P. C., Coord. Chem. Rev. 2018, 376, 548–564;
Marhenke J., Trevino K., Works C., Coord. Chem. Rev. 2016, 306, 533–543;
Pierri A. E., Huang P.-J., Garcia J. V., Stanfill J. G., Chui M., Wu G., Zheng N., Ford P. C., Chem. Commun. 2015, 51, 2072–2075; PubMed
Pierri A. E., Muizzi D. A., Ostrowski A. D., Ford P. C. in Luminescent and Photoactive Transition Metal Complexes as Biomolecular Probes and Cellular Reagents, Vol. 165 (Ed.: K. K.-W. Lo), Springer, 2015, pp. 1–46;
Schatzschneider U., Eur. J. Inorg. Chem. 2010, 1451–1467;
Carrington S. J., Chakraborty I., Bernard J. M. L., Mascharak P. K., Inorg. Chem. 2016, 55, 7852–7858; PubMed
Pickens R. N., Neyhouse B. J., Reed D. T., Ashton S. T., White J. K., Inorg. Chem. 2018, 57, 11616–11625. PubMed
Bonnet S., Comments Inorg. Chem. 2015, 35, 179–213.
Niesel J., Pinto A., N′Dongo H. W. P., Merz K., Ott I., Gust R., Schatzschneider U., Chem. Commun. 2008, 1798–1800; PubMed
Soboleva T., Berreau L. M., Isr. J. Chem. 2019, 59, 339–350; PubMed PMC
Jimenez J., Chakraborty I., Dominguez A., Martinez-Gonzalez J., Sameera W. M. C., Mascharak P. K., Inorg. Chem. 2018, 57, 1766–1773; PubMed
Reddy G. U., Axthelm J., Hoffmann P., Taye N., Glaser S., Gorls H., Hopkins S. L., Plass W., Neugebauer U., Bonnet S., Schiller A., J. Am. Chem. Soc. 2017, 139, 4991–4994; PubMed
Üstün E., Ozgur A., Coskun K. A., Dusunceli S. D., Ozdemir I., Tutar Y., Transit. Met. Chem. 2017, 42, 331–337;
Pierri A. E., Pallaoro A., Wu G., Ford P. C., J. Am. Chem. Soc. 2012, 134, 18197–18200; PubMed
Tamasi G., Merlino A., Scaletti F., Heffeter P., Legin A. A., Jakupec M. A., Berger W., Messori L., Keppler B. K., Cini R., Dalton Trans. 2017, 46, 3025–3040; PubMed
Vítek L., Gbelcova H., Muchova L., Vanova K., Zelenka J., Konickova R., Suk J., Zadinova M., Knejzlik Z., Ahmad S., Fujisawa T., Ahmed A., Ruml T., Dig. Liver Dis. 2014, 46, 369–375; PubMed
Marker S. C., MacMillan S. N., Zipfel W. R., Li Z., Ford P. C., Wilson J. J., Inorg. Chem. 2018, 57, 1311–1331; PubMed PMC
Carrington S. J., Chakraborty I., Bernard J. M. L., Mascharak P. K., ACS Med. Chem. Lett. 2014, 5, 1324–1328. PubMed PMC
Bischof C., Joshi T., Dimri A., Spiccia L., Schatzschneider U., Inorg. Chem. 2013, 52, 9297–9308; PubMed
Kubeil M., Vernooij R. R., Kubeil C., Wood B. R., Graham B., Stephan H., Spiccia L., Inorg. Chem. 2017, 56, 5941–5952; PubMed
Gabrielsson A., Zális S., Matousek P., Towrie M., Vlcek A. J., Inorg. Chem. 2004, 43, 7380–7388; PubMed
Kuramochi Y., Fukaya K., Yoshida M., Ishida H., Chem. Eur. J. 2015, 21, 10049–10060. PubMed
Loudet A., Burgess K., Chem. Rev. 2007, 107, 4891–4932; PubMed
Ulrich G., Ziessel R., Harriman A., Angew. Chem. Int. Ed. 2008, 47, 1184–1201; PubMed
Angew. Chem. 2008, 120, 1202–1219;
Lu H., Mack J., Yang Y. C., Shen Z., Chem. Soc. Rev. 2014, 43, 4778–4823; PubMed
Heisig F., Gollos S., Freudenthal S. J., El-Tayeb A., Iqbal J., Muller C. E., J. Fluoresc. 2014, 24, 213–230; PubMed
Lakshmi V., Rao M. R., Ravikanth M., Org. Biomol. Chem. 2015, 13, 2501–2517; PubMed
Ge Y., O'Shea D. F., Chem. Soc. Rev. 2016, 45, 3846–3864. PubMed
Tasan S., Zava O., Bertrand B., Bernhard C., Goze C., Picquet M., Le Gendre P., Harvey P., Denat F., Casini A., Bodio E., Dalton Trans. 2013, 42, 6102–6109; PubMed
Doulain P. E., Decreau R., Racoeur C., Goncalves V., Dubrez L., Bettaieb A., Le Gendre P., Denat F., Paul C., Goze C., Bodio E., Dalton Trans. 2015, 44, 4874–4883; PubMed
Trommenschlager A., Chotard F., Bertrand B., Amor S., Dondaine L., Picquet M., Richard P., Bettaieb A., Le Gendre P., Paul C., Goze C., Bodio E., Dalton Trans. 2017, 46, 8051–8056; PubMed
Bertrand B., Passador K., Goze C., Denat F., Bodio E., Salmain M., Coord. Chem. Rev. 2018, 358, 108–124;
Pliquett J., Amor S., Ponce-Vargas M., Laly M., Racoeur C., Rousselin Y., Denat F., Bettaieb A., Fleurat-Lessard P., Paul C., Goze C., Bodio E., Dalton Trans. 2018, 47, 11203–11218. PubMed
Sletten E. M., Bertozzi C. R., Angew. Chem. Int. Ed. 2009, 48, 6974–6998; PubMed PMC
Angew. Chem. 2009, 121, 7108–7133;
Bednarek C., Wehl I., Jung N., Schepers U., Brase S., Chem. Rev. 2020, 120, 4301–4354; PubMed
Köhn M., Breinbauer R., Angew. Chem. Int. Ed. 2004, 43, 3106–3116; PubMed
Angew. Chem. 2004, 116, 3168–3178;
Wodtke R., Konig J., Pigorsch A., Kockerling M., Mamat C., Dyes Pigm. 2015, 113, 263–273;
Pretze M., Kuchar M., Bergmann R., Steinbach J., Pietzsch J., Mamat C., ChemMedChem 2013, 8, 935–945. PubMed
Guo P., Yan S. Y., Hu J. L., Xing X. W., Wang C. C., Xu X. W., Qiu X. Y., Ma W., Lu C. J., Weng X. C., Zhou X., Org. Lett. 2013, 15, 3266–3269; PubMed
Lan T. Y., Du H. J., Chem. Pap. 2019, 73, 1347–1356.
Kosiova I., Janicova A., Kois P., Beilstein J. Org. Chem. 2006, 2, 5. PubMed PMC
Zatsikha Y. V., Swedin R. K., Healy A. T., Goff P. C., Didukh N. O., Blesener T. S., Kayser M., Kovtun Y. P., Blank D. A., Nemykin V. N., Chem. Eur. J. 2019, 25, 8401–8414. PubMed
Collomb-Dunand-Sauthier M., Deronzier A., Ziessel R., J. Organomet. Chem. 1993, 444, 191–198;
Eskelinen E., Kinnunen T.-J. J., Haukka M., Pakkanen T. A., Eur. J. Inorg. Chem. 2002, 1169–1173.
Kubeil M., Joshi T., Wood B. R., Stephan H., ChemistryOpen 2019, 8, 637–642; PubMed PMC
Shaw H., Toby S., J. Chem. Educ. 1966, 43, 408;
Toby S., J. Chem. Educ. 2005, 82, 37.
Pan L. T., Wang X. X., Yang S. Y., Wu X., Lee I., Zhang X. Z., Rupp R. A., Xu J. J., PLoS One 2012, 7, e44142. PubMed PMC
Liu N. Y., Guo L., Cao Z. R., Li W. L., Zheng X. L., Shi Y. Y., Guo J., Xi Y. R., J. Phys. Chem. A 2016, 120, 2408–2419; PubMed
Luukkanen S., Homanen P., Haukka M., Pakkanen T. A., Deronzier A., Chardon-Noblat S., Zsoldos D., Ziessel R., Appl. Catal. A 1999, 185, 157–164;
Haukka M., Kiviaho J., Ahlgrh M., Pakkanen T. A., Organometallics 1995, 14, 825–833.
Zuckerbraun B. S., Chin B. Y., Bilban M., d'Avila J. C., Rao J., Billiar T. R., Otterbein L. E., FASEB J. 2007, 21, 1099–1106. PubMed
Chiang S. K., Chen S. E., Chang L. C., Int. J. Mol. Sci. 2019, 20, 39;
Song R. P., Zhou Z. H., Kim P. K. M., Shapiro R. A., Liu F., Ferran C., Choi A. M. K., Otterbein L. E., J. Biol. Chem. 2004, 279, 44327–44334; PubMed
Wegiel B., Gallo D., Csizmadia E., Harris C., Belcher J., Vercellotti G. M., Penacho N., Seth P., Sukhatme V., Ahmed A., Pandolfi P. P., Helczynski L., Bjartell A., Persson J. L., Otterbein L. E., Cancer Res. 2013, 73, 7009–7021; PubMed PMC
Yang P. S., Hsu Y. C., Lee J. J., Chen M. J., Huang S. Y., Cheng S. P., Int. J. Mol. Sci. 2018, 19, 2502.
Miller M. A., Askevold B., Yang K. S., Kohler R. H., Weissleder R., ChemMedChem 2014, 9, 1131–1135; PubMed PMC
Sun T. T., Guan X. G., Zheng M., Jing X. B., Xie Z. G., ACS Med. Chem. Lett. 2015, 6, 430–433. PubMed PMC
Moreno R. D., Schatten G., Ramalho-Santos J., Biol. Reprod. 2002, 66, 1259–1266; PubMed
Pagano R. E., Martin O. C., Kang H. C., Haugland R. P., J. Cell Biol. 1991, 113, 1267–1279; PubMed PMC
Teiten M. H., Bezdetnaya L., Morliere P., Santus R., Guillemin F., Br. J. Cancer 2003, 88, 146–152. PubMed PMC
Hearn J. M., Romero-Canelon I., Qamar B., Liu Z., Hands-Portman I., Sadler P. J., ACS Chem. Biol. 2013, 8, 1335–1343; PubMed PMC
Mitra K., Gautam S., Kondaiah P., Chakravarty A. R., ChemMedChem 2016, 11, 1956–1967. PubMed
Michel B. W., Lippert A. R., Chang C. J., J. Am. Chem. Soc. 2012, 134, 15668–15671; PubMed
Ohata J., Bruemmer K. J., Chang C. J., Acc. Chem. Res. 2019, 52, 2841–2848. PubMed PMC
Kand D., Pizarro L., Angel I., Avni A., Friedmann-Morvinski D., Weinstain R., Angew. Chem. Int. Ed. 2019, 58, 4659–4663; PubMed PMC
Angew. Chem. 2019, 131, 4707–4711.
Dunn K. W., Kamocka M. M., McDonald J. H., Am. J. Physiol. Cell Physiol. 2011, 300, C723-C742; PubMed PMC
Aaron J. S., Taylor A. B., Chew T. L., J. Cell Sci. 2018, 131, jcs211847. PubMed
Belitsky J. M., Leslie S. J., Arora P. S., Beerman T. A., Dervan P. B., Bioorg. Med. Chem. 2002, 10, 3313–3318. PubMed
Fulmer G. R., Miller A. J. M., Sherden N. H., Gottlieb H. E., Nudelman A., Stoltz B. M., Bercaw J. E., Goldberg K. I., Organometallics 2010, 29, 2176–2179.
Hatchard C. G., Parker C. A., Proc. R. Soc. London Ser. A 1956, 235, 518–536;
Bowman W. D., Demas J. N., J. Phys. Chem. 1976, 80, 2434–2435.