Modern termites inherited the potential of collective construction from their common ancestor
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
32724550
PubMed Central
PMC7381753
DOI
10.1002/ece3.6381
PII: ECE36381
Knihovny.cz E-resources
- Keywords
- collective behavior, evolutionary convergence, nest construction, parallel evolution, parameter tuning, self‐organization,
- Publication type
- Journal Article MeSH
Animal collective behaviors give rise to various spatial patterns, such as the nests of social insects. These structures are built by individuals following a simple set of rules, slightly varying within and among species, to produce a large diversity of shapes. However, little is known about the origin and evolution of the behavioral mechanisms regulating nest structures. In this study, we discuss the perspective of inferring the evolution of collective behaviors behind pattern formations using a phylogenetic framework. We review the collective behaviors that can be described by a single set of behavioral rules, and for which variations of the environmental and behavioral parameter values produce diverse patterns. We propose that this mechanism could be at the origin of the pattern diversity observed among related species, and that, when they are placed in the proper conditions, species have the behavioral potential to form patterns observed in related species. The comparative analysis of shelter tube construction by lower termites is consistent with this hypothesis. Although the use of shelter tubes in natural conditions is variable among species, most modern species have the potential to build them, suggesting that the behavioral rules for shelter tube construction evolved once in the common ancestor of modern termites. Our study emphasizes that comparative studies of behavioral rules have the potential to shed light on the evolution of collective behaviors.
See more in PubMed
Abe, T. (1987) Evolution of life types in termites In Kawano S., Connell J., & Hidaka T. (Eds.), Evolution and coadaptation in biotic communities (pp. 125–148). Tokyo, Japan: University of Tokyo Press.
Arab, D. A. , Namyatova, A. , Evans, T. A. , Cameron, S. L. , Yeates, D. K. , Ho, S. Y. W. , & Lo, N. (2017). Parallel evolution of mound‐building and grass‐feeding in Australian nasute termites. Biology Letters, 13, 20160665 10.1098/rsbl.2016.0665 PubMed DOI PMC
Bardunias, P. M. , & Su, N.‐Y. (2010). Queue size determines the width of tunnels in the formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Insect Behavior, 23, 189–204. 10.1007/s10905-010-9206-z DOI
Bell, W. J. , Roth, L. M. , & Nalepa, C. A. (2007). Cockroaches ecology, behavior and natural history. Baltimore, MD: JHU Press.
Lee, S. B. , Su, N. Y. , Song, H. S. , & Lee, S. H. (2020). Minimizing moving distance in deposition behavior of the subterranean termite. Ecology and Evolution, 10(4), 2145–2152. 10.1002/ece3.6051 PubMed DOI PMC
Bonabeau, E. (1998). Social insect colonies as complex adaptive systems. Ecosystems, 1, 437–443. 10.1007/s100219900038 DOI
Bonabeau, E. , Theraulaz, G. , Deneubourg, J. , Franks, N. R. , Rafelsberger, O. , Joly, J. , & Blanco, S. (1998). A model for the emergence of pillars, walls and royal chambers in termite nests. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 1561–1576. 10.1098/rstb.1998.0310 DOI
Bordereau, C. , & Pasteels, J. M. (2011). Pheromones and chemical ecology of dispersal and foraging in termites In Bignell D. E., Roisin Y., & Lo N. (Eds.), Biology of termites: A modern synthesis (pp. 279–320). Dordrecht, the Netherlands: Springer.
Bourguignon, T. , Chisholm, R. A. , & Evans, T. A. (2016). The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. American Naturalist, 187, 372–387. 10.1086/684838 PubMed DOI
Bourguignon, T. , Lo, N. , Cameron, S. L. , Sobotník, J. , Hayashi, Y. , Shigenobu, S. , … Evans, T. A. (2015). The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution, 32, 406–421. PubMed
Bruinsma, O. H. (1979). An analysis of building behaviour of the termite Macrotermes subhyalinus (Rambur). Wageningen, the Netherlands: Landbouwhogeschool.
Bucek, A. , Šobotník, J. , He, S. , Shi, M. , McMahon, D. P. , Holmes, E. C. , … Bourguignon, T. (2019). Evolution of termite symbiosis informed by transcriptome‐based phylogenies. Current Biology, 29, 3728–3734.e4. 10.1016/j.cub.2019.08.076 PubMed DOI
Camazine, S. , Deneubourg, J.‐L. , Franks, N. R. , Sneyd, J. , Bonabeau, E. , & Theraula, G. (2001). Self‐organization in biological systems. Princeton, NJ: Princeton University Press.
Carey, N. E. , Calovi, D. S. , Bardunias, P. , Turner, J. S. , Nagpal, R. , & Werfel, J. (2019). Differential construction response to humidity by related species of mound‐building termites. Journal of Experimental Biology, 222, jeb212274 10.1242/jeb.212274 PubMed DOI PMC
Castle, G. B. (1934). The dampwood termites of western United States, genus Zootermopsis (formerly Termopsis) In Kofoid C. A. (Ed.), Termite and termite control (pp. 273–310). Berkeley, CA: University of California Press.
Chouvenc, T. , Efstathion, C. A. , Elliott, M. L. , & Su, N.‐Y. (2013). Extended disease resistance emerging from the faecal nest of a subterranean termite. Proceedings of the Royal Society of London. Series B: Biological Sciences, 280, 20131885 10.1098/rspb.2013.1885 PubMed DOI PMC
Couzin, I. D. , Krause, J. , James, R. , Ruxton, G. D. , & Franks, N. R. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11. 10.1006/jtbi.2002.3065 PubMed DOI
Cullen, D. A. , Cease, A. J. , Latchininsky, A. V. , Ayali, A. , Berry, K. , Buhl, J. , … Rogers, S. M. (2017). From molecules to management: Mechanisms and consequences of locust phase polyphenism. Advances in Insect Physiology, 53, 167–285. 10.1016/BS.AIIP.2017.06.002 DOI
Deneubourg, J.‐L. , Grégoire, J. C. , & Le Fort, E. (1990). Kinetics of larval gregarious behavior in the bark beetle Dendroctonus micans (Coleoptera: Scolytidae). Journal of Insect Behavior, 3, 169–182. 10.1007/BF01417910 DOI
Duarte, A. , Pen, I. , Keller, L. , & Weissing, F. J. (2012). Evolution of self‐organized division of labor in a response threshold model. Behavioral Ecology and Sociobiology, 66, 947–957. 10.1007/s00265-012-1343-2 PubMed DOI PMC
Duarte, A. , Weissing, F. J. , Pen, I. , & Keller, L. (2011). An evolutionary perspective on self‐organized division of labor in social insects. Annual Review of Ecology Evolution and Systematics, 42, 91–110. 10.1146/annurev-ecolsys-102710-145017 DOI
Emerson, E. A. (1938). Termite nests: A study of the phylogeny of behavior. Ecological Monographs, 8, 247–284. 10.2307/1943251 DOI
Fouquet, D. , Costa‐Leonardo, A. M. , Fournier, R. , Blanco, S. , & Jost, C. (2014). Coordination of construction behavior in the termite Procornitermes araujoi: Structure is a stronger stimulus than volatile marking. Insectes Sociaux, 61, 253–264. 10.1007/s00040-014-0350-x DOI
Franks, N. R. , Gomez, N. , Goss, S. , & Deneubourg, J.‐L. (1991). The blind leading the blind in army ant raid patterns: Testing a model of self‐organization (Hymenoptera: Formicidae). Journal of Insect Behavior, 4, 583–607. 10.1007/BF01048072 DOI
Fujisawa, R. , Ichinose, G. , & Dobata, S. (2019). Regulatory mechanism predates the evolution of self‐organizing capacity in simulated ant‐like robots. Communications Biology, 2, 1–12. 10.1038/s42003-018-0276-3 PubMed DOI PMC
Gordon, D. M. (2016). The evolution of the algorithms for collective behavior. Cell Systems, 3, 514–520. 10.1016/j.cels.2016.10.013 PubMed DOI
Grassé, P.‐P. (1959). La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–80. 10.1007/BF02223791 DOI
Green, B. , Bardunias, P. , Turner, J. S. , Nagpal, R. , & Werfel, J. (2017). Excavation and aggregation as organizing factors in de novo construction by mound‐building termites. Proceedings of the Royal Society of London. Series B: Biological Sciences, 284(1856), 20162730 10.1098/rspb.2016.2730 PubMed DOI PMC
Herbert‐Read, J. E. , Perna, A. , Mann, R. P. , Schaerf, T. M. , Sumpter, D. J. T. , & Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences of the United States of America, 108, 18726–18731. 10.1073/pnas.1109355108 PubMed DOI PMC
Himmi, S. K. , Yoshimura, T. , Yanase, Y. , Oya, M. , Torigoe, T. , & Imazu, S. (2014). X‐ray tomographic analysis of the initial structure of the royal chamber and the nest‐founding behavior of the drywood termite Incisitermes minor . Journal of Wood Science, 60(6), 453–460. 10.1007/s10086-014-1427-x DOI
Ioannou C. C., Guttal V., & Couzin I. D. (2012). Predatory Fish Select for Coordinated Collective Motion in Virtual Prey. Science, 337, (6099), 1212–1215. 10.1126/science.1218919. PubMed DOI
Inward, D. J. G. , Vogler, A. P. , & Eggleton, P. (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44, 953–967. 10.1016/j.ympev.2007.05.014 PubMed DOI
Jost, C. , Verret, J. , Casellas, E. , Gautrais, J. , Challet, M. , Lluc, J. , … Theraulaz, G. (2007). The interplay between a self‐organized process and an environmental template: Corpse clustering under the influence of air currents in ants. Journal of the Royal Society, Interface, 4, 107–116. 10.1098/rsif.2006.0156 PubMed DOI PMC
Kaib, M. , Husseneder, C. , Epplen, C. , Epplen, J. T. , & Brandl, R. (1996). Kin‐biased foraging in a termite. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263, 1527–1532. 10.1098/rspb.1996.0223 DOI
Karsai, I. , & Penzes, Z. (1998). Nest shapes in paper wasps: Can the variability of forms be deduced from the same construction algorithm? Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 1261–1268. 10.1098/rspb.1998.0428 DOI
Karsai, I. , & Wenzel, J. W. (1998). Productivity, individual‐level and colony‐level flexibility, and organization of work as consequences of colony size. Proceedings of the National Academy of Sciences of the United States of America, 95, 8665–8669. 10.1073/pnas.95.15.8665 PubMed DOI PMC
Kasumyan, A. O. , & Pavlov, D. S. (2018). Evolution of schooling behavior in fish. Journal of Ichthyology, 58, 670–678. 10.1134/s0032945218050090 DOI
Khamraev, A. S. , Kuchkarova, L. S. , Ahmerov, R. N. , Mirzaeva, G. , Hanzafarova, N. , … Bland, J. (2008). Trail‐following activity in extracts of sternal glands from Anacanthotermes turkestanicus (Isoptera: Hodotermitidae). Sociobiologyi, 51(3), 685–696.
Khuong, A. , Theraulaz, G. , Jost, C. , & Perna, A. (2011). A computational model of ant nest morphogenesis. Advances in Artificial Life, ECAL 2011, Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems. pp. 404–411.
Korb, J. (2008). The ecology of social evolution in termites In Korb J., & Heinze J. (Eds.), Ecology of social evolution (pp. 151–174). Berlin, Heidelberg, Germany: Springer.
Korb, J. , & Lenz, M. (2004). Reproductive decision‐making in the termite, Cryptotermes secundus (Kalotermitidae), under variable food conditions. Behavioral Ecology, 15, 390–395. 10.1093/beheco/arh033 DOI
Lee, K. E. , & Wood, T. G. (1971). Termites and soils. London, UK: Academic Press.
Light, S. F. (1937). Contributions to the biology and taxonomy of Kalotermes (Paraneotermes) simplicicornis Bank (Isoptera). University of California Publications in Entomology, 6, 423–464.
Mizumoto, N. (2018). Barricade construction by primitive termites: Task allocation and evolutionary perspectives. Artificial Life and Robotics, 23, 469–473. 10.1007/s10015-018-0474-6 DOI
Mizumoto, N. , Bardunias, P. M. , & Pratt, S. C. (2019). Parameter tuning facilitates the evolution of diverse tunneling patterns in termites. bioRxiv, 836346 10.1101/836346 DOI
Mizumoto, N. , Kobayashi, K. , & Matsuura, K. (2015). Emergence of intercolonial variation in termite shelter tube patterns and prediction of its underlying mechanism. Royal Society Open Science, 2, 150360 10.1098/rsos.150360 PubMed DOI PMC
Mizumoto, N. , & Matsuura, K. (2013). Colony‐specific architecture of shelter tubes by termites. Insectes Sociaux, 60, 525–530. 10.1007/s00040-013-0319-1 DOI
Mizumoto, N. , Miyata, S. , & Pratt, S. C. (2019). Inferring collective behaviour from a fossilized fish shoal. Proceedings of the Royal Society of London. Series B: Biological Sciences, 286, 20190891 10.1098/rspb.2019.0891 PubMed DOI PMC
Morgan, F. D. (1959). The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae). Transactions of the Royal Society of New Zealand, 86, 155–195.
Nkunika, P. O. Y. (1988). The Biology and ecology of the dampwood termite, Porotermes adamson (Froggati) (Isoptera: Termopsidae) in South Australia. Adelaide, SA: University of Adelaide.
Noirot, C. (1970). The nests of termites In Krishna K., & Weesner F. (Eds.), Biology of termites II (pp. 73–125). New York, NY: Academic Press.
Oberst, S. , Lai, J. C. S. , & Evans, T. A. (2016). Termites utilise clay to build structural supports and so increase foraging resources. Scientific Reports, 6, 20990 10.1038/srep20990 PubMed DOI PMC
Ocko, S. A. , Heyde, A. , & Mahadevan, L. (2019). Morphogenesis of termite mounds. Proceedings of the National Academy of Sciences of the United States of America, 116, 3379–3384. 10.1073/pnas.1818759116 PubMed DOI PMC
Perna, A. , & Theraulaz, G. (2017). When social behaviour is moulded in clay: On growth and form of social insect nests. Journal of Experimental Biology, 220, 83–91. 10.1242/jeb.143347 PubMed DOI
Petersen, K. , Bardunias, P. , Napp, N. , Werfel, J. , Nagpal, R. , & Turner, S. (2015). Arrestant property of recently manipulated soil on Macrotermes michaelseni as determined through visual tracking and automatic labeling of individual termite behaviors. Behavioural Processes, 116, 8–11. 10.1016/j.beproc.2015.04.004 PubMed DOI
Pratt, S. C. , & Sumpter, D. J. T. (2006). A tunable algorithm for collective decision‐making. Proceedings of the National Academy of Sciences of the United States of America, 103, 15906–15910. 10.1073/pnas.0604801103 PubMed DOI PMC
Rajakumar, R. , San Mauro, D. , Dijkstra, M. B. , Huang, M. H. , Wheeler, D. E. , Hiou‐Tim, F. , … Abouheif, E. (2012). Ancestral developmental potential facilitates parallel evolution in ants. Science, 335, 79–82. 10.1126/science.1211451 PubMed DOI
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223. 10.1111/j.2041-210X.2011.00169.x DOI
Rupf, T. , & Roisin, Y. (2008). Coming out of the woods: Do termites need a specialized worker caste to search for new food sources? Naturwissenschaften, 95, 811–819. 10.1007/s00114-008-0387-7 PubMed DOI
Schmickl, T. , & Karsai, I. (2018). Integral feedback control is at the core of task allocation and resilience of insect societies. Proceedings of the National Academy of Sciences of the United States of America, 115, 13180–13185. 10.1073/pnas.1807684115 PubMed DOI PMC
Suzuki, T. K. (2017). On the origin of complex adaptive traits: Progress since the Darwin versus Mivart debate. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 328, 304–320. 10.1002/jez.b.22740 PubMed DOI
Sword, G. A. (2003). To be or not to be a locust? A comparative analysis of behavioral phase change in nymphs of Schistocerca americana and S. gregaria . Journal of Insect Physiology, 49, 709–717. 10.1016/S0022-1910(03)00092-1 PubMed DOI
Theraulaz, G. , & Bonabeau, E. (1995). Modelling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology, 177, 381–400. 10.1006/jtbi.1995.0255 DOI
Theraulaz, G. , Bonabeau, E. , Nicolis, S. C. , Sole, R. V. , Fourcassie, V. , Blanco, S. , … Deneubourg, J.‐L. (2002). Spatial patterns in ant colonies. Proceedings of the National Academy of Sciences of the United States of America, 99, 9645–9649. 10.1073/pnas.152302199 PubMed DOI PMC
Thorne, B. L. (1997). Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 27–54.
Tuma, J. , Eggleton, P. , & Fayle, T. M. (2019). Ant‐termite interactions: An important but under‐explored ecological linkage. Biological Reviews, 95(3), 555–572. 10.1111/brv.12577 PubMed DOI
Waterhouse, D. F. , & Norris, K. R. (1993). Biological Control: Pacific prospects – Supplement 2. Canberra, ACT: Australian Centre for International Agricultural Research.
Watson, J. A. L. , & Sewell, J. J. (1985). Caste development in Mastotermes and Kalotermes: Which is primitive? In Caste differentiation in social insects (pp. 27–40). Oxford, UK: Pergamon Press Ltd.
Wilkinson, W. (1962). Dispersal of alates and establishment of new colonies in Cryptotermes havilandi (Sjöstedt) (Isoptera, Kalotermitidae). Bulletin of Entomological Research, 53, 265–286. 10.1017/S0007485300048124 DOI
Zachariah, N. , Das, A. , Murthy, T. G. , & Borges, R. M. (2017). Building mud castles: A perspective from brick‐laying termites. Scientific Reports, 7, 4692 10.1038/s41598-017-04295-3 PubMed DOI PMC
Alarm communication predates eusociality in termites
Termite nest evolution fostered social parasitism by termitophilous rove beetles
Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae
Dryad
10.5061/dryad.bg79cnp7q