Successful Outcome of Phytostabilization in Cr(VI) Contaminated Soils Amended with Alkalizing Additives
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32825498
PubMed Central
PMC7503857
DOI
10.3390/ijerph17176073
PII: ijerph17176073
Knihovny.cz E-resources
- Keywords
- Festuca rubra L., immobilizing amendments, risk minimization, soil contamination, soil remediation,
- MeSH
- Biodegradation, Environmental * MeSH
- Chromium * analysis MeSH
- Soil Pollutants * analysis MeSH
- Soil MeSH
- Plants MeSH
- Environmental Pollution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromium * MeSH
- chromium hexavalent ion MeSH Browser
- Soil Pollutants * MeSH
- Soil MeSH
This study analysed the effect of three alkalizing soil amendments (limestone, dolomite chalcedonite) on aided phytostabilization with Festuca rubra L. depending on the hexavalent chromium (Cr(VI)) level in contaminated soil. Four different levels of Cr(VI) were added to the soil (0, 50, 100 and 150 mg/kg). The Cr contents in the plant roots and above-ground parts and the soil (total and extracted Cr by 0.01 M CaCl2) were determined with flame atomic absorption spectrometry. The phytotoxicity of the soil was also determined. Soil amended with chalcedonite significantly increased F. rubra biomass. Chalcedonite and limestone favored a considerable accumulation of Cr in the roots. The application of dolomite and limestone to soil contaminated with Cr(VI) contributed to a significant increase in pH values and was found to be the most effective in reducing total Cr and CaCl2-extracted Cr contents from the soil. F. rubra in combination with a chalcedonite amendment appears to be a promising solution for phytostabilization of Cr(VI)-contaminated areas. The use of this model can contribute to reducing human exposure to Cr(VI) and its associated health risks.
See more in PubMed
Shahid M., Shamshad S., Rafiq M., Khalid S., Bibi I., Niazi N.K., Dumat C., Rashid M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere. 2017;178:513–533. doi: 10.1016/j.chemosphere.2017.03.074. PubMed DOI
Majewski G., Rogula-Kozlowska W., Rozbicka K., Rogula-Kopiec P., Mathews B., Brandyk A. Concentration, Chemical Composition and Origin of PM1: Results from the First Long-term Measurement Campaign in Warsaw (Poland) Aerosol. Air Qual. Res. 2018;18:636–654. doi: 10.4209/aaqr.2017.06.0221. DOI
Wyszkowski M., Radziemska M. Effects of chromium (III and VI) on spring barley and maize biomass yield and content if nitrogenous compounds. J. Toxicol. Environ. Health Part A. 2010;73:17–18. doi: 10.1080/15287394.2010.492016. PubMed DOI
Fantoni D., Brozzo G., Canepa M., Cipolli F., Marini L., Ottonello G., Zuccolini M. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ. Geol. 2002;42:871–882.
Hu J., Meng D.L., Liu H.D., Liang Y.L., Yin H.Q., Liu H.W. Response of soil fungal community to long-term chromiumcontamination. Trans. Nonferr. Met. Soc. China. 2018;28:1838–1846.
Beukes J.P., du Preez S.P., van Zyl P.G., Paktunc D., Fabritius T., Päätalo M., Cramer M. Review of Cr(VI) environmental practices in the chromite mining and smelting industry—Relevance to development of the Ring of Fire, Canada. J. Clean. Prod. 2017;165:874–889.
Bashir M.A., Naveed M., Ahmad Z., Gao B., Mustafa A., Núñez-Delgado A. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 2020;259:110051. PubMed
Hashem M.A., Islam A., Mohsin S., Nur-A.-Tomal S. Green environment suffers by discharging of high-chromium-containing wastewater from the tanneries at Hazaribagh, Bangladesh. Sustain. Water Resour. Manag. 2015;1:343–347. doi: 10.1007/s40899-015-0033-4. DOI
Barbir D., Dabić P., Krolo P. Stabilization of chromium salt in ordinary portland cement. Sadhana. 2012;37:731–737. doi: 10.1007/s12046-012-0106-0. DOI
Su M., Yin W., Liu L., Li P., Fang Z., Fang Y., Chiang P., Wu J. Enhanced Cr(VI) stabilization in soil by carboxymethyl cellulose-stabilized nanosized Fe0 (CMC-nFe0) and mixed anaerobic microorganisms. J. Environ. Manag. 2020;257:109951. PubMed
U.S. Department of Health and Human Services Toxicological Profile for Chromium. [(accessed on 18 August 2020)]; Available online: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf.
Liu Y., Yuan J., Ning Y., Tang Y., Luo S., Jiang B. Efficient reduction of Cr(VI) and immobilization of Cr driven by an iron-air fuel cell: Reaction mechanisms and electricity generation. Chemosphere. 2020;253:126730. doi: 10.1016/j.chemosphere.2020.126730. PubMed DOI
Zhang T., Hu L., Zhang M., Jiang M., Fiedler H., Bai W., Wang X., Zhang D., Li Z. Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology. Environ. Pollut. 2019;252:1399–1405. doi: 10.1016/j.envpol.2019.06.051. PubMed DOI
Jeyaseelan C., Gupta A. Green tea leaves as a natural adsorbent for the removal of Cr(VI) from aqueous solutions. Air Soil Water Res. 2016;9:13–19. doi: 10.4137/ASWR.S35227. DOI
Tan H., Wang C., Li H., Peng D., Zeng C., Xu. H. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora. Chemosphere. 2020;242:125251. doi: 10.1016/j.chemosphere.2019.125251. PubMed DOI
Głuchowski A., Sas W., Dzięcioł J., Soból E., Szymański A. Permeability and leaching properties of recycled concrete aggregate as an emerging material in civil engineering. Appl. Sci. 2019;9:81. doi: 10.3390/app9010081. DOI
Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology. Mol. Clin. Environ. Toxicol. 2012;101:133–164. PubMed PMC
Liu S., Pu S., Deng D., Huang H., Yan C., Ma H., Razavi B.S. Comparable effects of manure and its biochar on reducing soil Cr bioavailability and narrowing the rhizosphere extent of enzyme activities. Environ. Int. 2020;134:105277. doi: 10.1016/j.envint.2019.105277. PubMed DOI
Levizou E., Zanni A.A., Antoniadis V. Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare) Environ. Sci. Pollut. Res. 2019;26:14–23. doi: 10.1007/s11356-018-2658-y. PubMed DOI
Radziemska M., Mazur Z., Fronczyk J., Matusik J. Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (Brassica juncea L.) Clay Miner. 2016;51:489–497. doi: 10.1180/claymin.2016.051.3.08. DOI
Wetle R., Bensko-Tarsitano B., Johnson K., Sweat K.G., Cahill T. Uptake of uranium into desert plants in an abandoned uranium mine and its implications for phytostabilization strategies. J. Environ. Radioac. 2020 doi: 10.1016/j.jenvrad.2020.106293. PubMed DOI
Tang C., Chen Y., Zhang Q., Li J., Zhang F., Liu Z. Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals. Ecotox. Environ. Saf. 2019;176:42–49. doi: 10.1016/j.ecoenv.2019.03.078. PubMed DOI
Teodoro M., Hejcman M., Vítková M., Wu S., Komárek M. Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Sci. Total Environ. 2020;703:134710. doi: 10.1016/j.scitotenv.2019.134710. PubMed DOI
Shahandeh H., Hossner L.R. Plant screening for chromium phytoremediation. Int. J. Phytorem. 2000;2:31–51.
Sinha V., Pakshirajan K., Chaturvedi R. Chromium tolerance, bioaccumulation and localization in plants: An overview. J. Environ. Manag. 2018;206:715–730. PubMed
Yaashikaa P.R., Kumar P.S., Saravanan A. Modeling and Cr(VI) ion uptake kinetics of Sorghum bicolor plant assisted by plant growth–promoting Pannonibacter phragmetitus: An ecofriendly approach. Environ. Sci. Pollut. Res. 2019 doi: 10.1007/s11356-019-05764-0. PubMed DOI
Ramana S., Biswas A.K., Singh A.B., Ahirwar N.K., Rao A.S. Potential of rose for phytostabilization of chromium contaminated soils. Indian J. Plant. Phys. 2013;18:381–383.
Radziemska M., Jeznach J., Mazur Z., Fronczyk J., Bilgin A. Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils. J. Water Land Dev. 2016;28:53–60.
Mishra T., Pandey V.C., Praveen A., Singh N.B., Singh N., Singh D.P. Phytoremediation ability of naturally growing plant species on the electroplating wastewater-contaminated site. Environ. Geochem. Health. 2020 doi: 10.1007/s10653-020-00529-y. PubMed DOI
Radziemska M. Study of applying naturally occurring mineral sorbents of Poland (dolomite, halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena. 2018;163:123–129. doi: 10.1016/j.catena.2017.12.015. DOI
Radziemska M., Bęś A., Gusiatin Z.M., Cerda A., Jeznach J., Mazur Z., Brtnický M. Assisted phytostabilization of soil from a former military area with mineral amendments. Ecotox. Environ. Saf. 2020;188:109934. PubMed
Luo Y., Wu Y., Shu J., Wu Z. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site. Environ. Pollut. 2019;253:330–341. doi: 10.1016/j.envpol.2019.07.015. PubMed DOI
Georgiev P., Groudev S., Spasova I., Nicolova M. Remediation of a grey forest soil contaminated with heavy metals by means of leaching at acidic pH. J. Soils Sediments. 2016;16:1288–1299. doi: 10.1007/s11368-015-1164-9. DOI
Dai S., Li Y., Zhou T., Zhao Y. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: Removal of Cd, Cu, and Zn, and soil fertility improvement. Environ. Sci. Pollut. Res. 2017;24:15260–15269. doi: 10.1007/s11356-017-9139-6. PubMed DOI
Kjeldahl J.Z. A new method for the determination of nitrogen in organic matter. Anal. Chem. 1983;22:366. doi: 10.1007/BF01338151. DOI
Walkley A., Black I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI
Cavell A.J. The colorimetric determination of phosphorous in plant materials. J. Sci. Food Agric. 1955;6:479–481. doi: 10.1002/jsfa.2740060814. DOI
Szyszko E. Instrumental Analytical Method. PZWL; Warsaw, Poland: 1982. p. 623.
US Environmental Protection Agency Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils and Oils. [(accessed on 19 August 2020)]; Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf.
Wakeel A., Xu M. Chromium Morpho-Phytotoxicity. Plants. 2020;9:564. doi: 10.3390/plants9050564. PubMed DOI PMC
Dey U., Mondal N.K. Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environ. Sci. 2016;2:1–12. doi: 10.1080/23311843.2016.1196472. DOI
Wolak W. Metale Ciężkie w Środowisku i Ich Analiza. Biblioteka Monitoringu Środowiska; Chełm, Poland: 1995. (In Polish)
Seleiman M.F., Ali S., Refay Y., Rizwan M., Alhammad B.A., El-Hendawy S.E. Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Chemosphere. 2020;250:126239. doi: 10.1016/j.chemosphere.2020.126239. PubMed DOI
Shankera A.K., Cervantes C., Loza-Tavera H., Avudainayagam S. Chromium toxicity in plants. Environ. Int. 2015;31:739–753. doi: 10.1016/j.envint.2005.02.003. PubMed DOI
Golovatyj S.E., Bogatyreva E.N., Golovatyi S.E. Effect of levels of Chromium content in a soil and its distribution in organs of corn plants. Soil Res. Fert. 1999;25:197–204.
Wyszkowski M., Radziemska M. Assessment of tri- and hexavalent Chromium phytotoxicity on Oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013;244:1619–1632. doi: 10.1007/s11270-013-1619-9. PubMed DOI PMC
Zhang T.-T., Xue Q., Wei M.-L. Leachability and Stability of Hexavalent-Chromium-Contaminated Soil Stabilized by Ferrous Sulfate and Calcium Polysulfide. Appl. Sci. 2018;8:1431. doi: 10.3390/app8091431. DOI
Zhang D., Xu Y., Li X., Wang L., He X., Ma Y., Zou D. The Immobilization Effect of Natural Mineral Materials on Cr(VI) Remediation in Water and Soil. Int. J. Environ. Res. Public Health. 2020;17:2832. doi: 10.3390/ijerph17082832. PubMed DOI PMC
Ram B.K., Han Y., Yang G., Ling Q., Dong F. Effect of Hexavalent Chromium [Cr(VI)] on Phytoremediation Potential and Biochemical Response of Hybrid Napier Grass with and without EDTA Application. Plants. 2019;8:515. doi: 10.3390/plants8110515. PubMed DOI PMC
Μolla A., Ioannou Z., Mollas S., Skoufogianni E., Dimirkou A. Removal of Chromium from soils cultivated with maize (Zea Mays) after the addition of natural minerals as soil amendments. Bull. Environ. Contam. Toxicol. 2017;98:347–352. doi: 10.1007/s00128-017-2044-3. PubMed DOI
Mendez M.O., Maier R.M. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ. Health Perspect. 2008;116:278–283. doi: 10.1289/ehp.10608. PubMed DOI PMC
Nworie O.E., Qin J., Lin C. Trace Element Uptake by Herbaceous Plants from the Soils at a Multiple Trace Element-Contaminated Site. Toxics. 2019;7:3. doi: 10.3390/toxics7010003. PubMed DOI PMC
Wyszkowski M., Radziemska M. The effect of Chromium content in soil on the concentration of some mineral elements in plants. Fres. Environ. Bull. 2009;18:7.
Efroymson R., Will M., Suter II G., Wooten A. Toxicological Benchmarks for Screening Contaminations of Potential Concern for Effects on Terrestrial Plants: 1997 Version. [(accessed on 19 August 2020)]; Available online: https://rais.ornl.gov/documents/tm85r3.pdf.
Sun Y., Guan F., Yang W., Wang F. Removal of Chromium from a Contaminated Soil Using Oxalic Acid, Citric Acid, and Hydrochloric Acid: Dynamics, Mechanisms, and Concomitant Removal of Non-Targeted Metals. Int. J. Environ. Res. Public Health. 2019;16:2771. doi: 10.3390/ijerph16152771. PubMed DOI PMC
Radziemska M., Mazur Z., Jeznach J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.) Chem. Eng. Trans. 2013;32:301–306. doi: 10.3303/CET1332051. DOI
Ye X., Kang S., Wang H., Li H., Zhang Y., Wang G., Zhaoa Y. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. J. Hazard. Mater. 2015;289:210–218. doi: 10.1016/j.jhazmat.2015.02.052. PubMed DOI
Hamon R.E., Holm P.E., Lorenz S.E., McGrath S.P., Christensen T.H. Metal uptake by plants from sludge-amended soils: Caution is required in the plateau interpretation. Plant. Soil. 1999;216:53–64. doi: 10.1023/A:1004780720809. DOI
Su C.Q., Li L.Q., Yang Z.H., Chai L.Y., Liao Q., Shi Y., Li J.W. Cr(VI) reduction in Chromium-contaminated soil by indigenous microorganisms under aerobic condition. Trans. Nonferr. Met. Soc. China. 2019;29:1304–1311. doi: 10.1016/S1003-6326(19)65037-5. DOI
Hair J., Anderson R., Tatham R., Black W. Multivariate Data Analysis. 5th ed. Prentice Hall; Upper Saddle River, NJ, USA: 1998.
Sharma S. Applied Multivariate Techniques. Wiley; New York, NY, USA: 1996.