Adipokinetic Hormones Enhance the Efficacy of the Entomopathogenic Fungus Isaria fumosorosea in Model and Pest Insects
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-03253S
Grantová Agentura České Republiky
PubMed
32998278
PubMed Central
PMC7600585
DOI
10.3390/pathogens9100801
PII: pathogens9100801
Knihovny.cz E-resources
- Keywords
- AKH, carbon dioxide production, entomopathogen, insect pest, metabolism, mortality,
- Publication type
- Journal Article MeSH
Insect adipokinetic hormones (AKHs) are neuropeptides with a wide range of actions, including the control of insect energy metabolism. These hormones are also known to be involved in the insect defence system against toxins and pathogens. In this study, our aim was to demonstrate whether the application of external AKHs significantly enhances the efficacy of the entomopathogenic fungus Isaria fumosorosea in a model species (firebug Pyrrhocoris apterus) and pest species (Egyptian cotton leafworm Spodoptera littoralis and pea aphid Acyrthosiphon pisum). It was found that the co-application of Isaria with AKHs significantly enhanced insect mortality in comparison to the application of Isaria alone. The mode of action probably involves an increase in metabolism that is caused by AKHs (evidenced by the production of carbon dioxide), which accelerates the turnover of Isaria toxins produced into the infected insects. However, several species-specific differences probably exist. Intoxication by Isaria elicited the stimulation of Akh gene expression and synthesis of AKHs. Therefore, all interactions between Isaria and AKH actions as well as their impact on insect physiology from a theoretical and practical point of view need to be discussed further.
See more in PubMed
Meyling N.V., Lübeck M., Buckley E.P., Eilenberg J., Rehner S.A. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol. Ecol. 2009;18:1282–1293. doi: 10.1111/j.1365-294X.2009.04095.x. PubMed DOI
Zimmermann G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): Biology, ecology and use in biological control. Biocontrol Sci. Technol. 2008;18:865–901. doi: 10.1080/09583150802471812. DOI
Wize M.C. Bulletin International de l’Académie des Sciences de Cracovie, Classe des Sciences Mathématique et Naturelles. Polska Akademia Umiejętności; Cracovie, Poland: 1904. Die durch Pilze hervorgerufenen Krankheiten des Rübenrusselka fers (Cleonus punctiventris Germ.) mit besonderer Berucksichtigung neuer Arten. Bulletin Number 713727.
Deshpande M.V. Mycopesticide production by fermentation: Potential and challenges. Crit. Rev. Microbiol. 1999;25:229–243. doi: 10.1080/10408419991299220. PubMed DOI
Ali S., Huang Z., Ren S. Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. J. Pest Sci. 2010;83:361–370. doi: 10.1007/s10340-010-0305-6. DOI
Lord J.C., Anderson S., Stanley D.W. Eicosanoids mediate Manduca sexta cellular response to the fungal pathogen Beauveria bassiana: A role for the lipoxygenase pathway. Arch. Insect Biochem. Physiol. 2002;51:46–54. doi: 10.1002/arch.10049. PubMed DOI
Jackson M.A., Payne A.R., Odelson D.A. Liquid-culture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus using portable fermentation equipment. J. Ind. Microbiol. Biotechnol. 2004;31:149–154. doi: 10.1007/s10295-004-0127-8. PubMed DOI
Weng Q., Zhang X., Chen W., Hu Q. Secondary metabolites and the risks of Isaria fumosorosea and Isaria farinosa. Molecules. 2019;24:664. doi: 10.3390/molecules24040664. PubMed DOI PMC
Gäde G., Hoffmann K.H., Spring J.H. Hormonal regulation in insects: Facts, gaps, and future directions. Physiol. Rev. 1997;77:963–1032. doi: 10.1152/physrev.1997.77.4.963. PubMed DOI
Van der Horst D.J., Van Marrewijk W.J.A., Diederen H.B. Adipokinetic hormones of insect: Release, signal transduction, and responses. Int. Rev. Cytol. 2001;211:179–240. PubMed
Kodrík D. Adipokinetic hormone functions that are not associated with insect flight. Physiol. Entomol. 2008;33:171–180. doi: 10.1111/j.1365-3032.2008.00625.x. DOI
Kodrík D., Bednářová A., Zemanová M., Krishnan N. Hormonal regulation of response to oxidative stress in insects—An update. Int. J. Mol. Sci. 2015;16:25788–25816. doi: 10.3390/ijms161025788. PubMed DOI PMC
Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature. 2004;431:316–320. doi: 10.1038/nature02897. PubMed DOI
Kodrík D., Plavšin I., Velki M., Stašková T. Enhancement of insecticide efficacy by adipokinetic hormones. In: Montgomery J., editor. Insecticides: Occurrence, Global Threats and Ecological Impact. 1st ed. Nova Science Publishers Inc.; New York, NY, USA: 2015. pp. 77–91.
Goldsworthy G.J., Kodrík D., Comley R., Lightfoot M. A quantitative study of the adipokinetic hormone of the firebug, Pyrrhocoris apterus. J. Insect Physiol. 2002;48:1103–1108. doi: 10.1016/S0022-1910(02)00203-2. PubMed DOI
Goldsworthy G.J., Chandrakant S., Opoku-Ware K. Adipokinetic hormone enhances nodule formation and phenoloxidase activation in adult locusts injected with bacterial lipopolysaccharide. J. Insect Physiol. 2003;49:795–803. doi: 10.1016/S0022-1910(03)00118-5. PubMed DOI
Goldsworthy G.J., Mullen L.M., Opoku-Ware K., Chandrakant S. Interactions between the endocrine end immune systems in locusts. Physiol. Entomol. 2003;28:54–61. doi: 10.1046/j.1365-3032.2003.00314.x. DOI
Gautam U.K., Bohatá A., Shaik H.A., Zemek R., Kodrík D. Adipokinetic hormone promotes infection with entomopathogenic fungus Isaria fumosorosea in the cockroach Periplaneta americana. Comp. Biochem. Physiol. C. 2020;229:108677. doi: 10.1016/j.cbpc.2019.108677. PubMed DOI
Ibrahim E., Hejníková M., Shaik H.A., Doležel D., Kodrík D. Adipokinetic hormone activities in insect body infected by entomopathogenic nematode. J. Insect Physiol. 2017;98:347–355. doi: 10.1016/j.jinsphys.2017.02.009. PubMed DOI
Ibrahim E., Dobeš P., Kunc M., Hyršl P., Kodrík D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. J. Insect Physiol. 2018;107:167–174. doi: 10.1016/j.jinsphys.2018.04.002. PubMed DOI
Shaik H.A., Mishra A., Kodrík D. Beneficial effect of adipokinetic hormone on neuromuscular paralysis in insect body elicited by braconid wasp venom. Comp. Biochem. Physiol. C. 2017;196:11–18. doi: 10.1016/j.cbpc.2017.02.011. PubMed DOI
Kodrík D., Bártů I., Socha R. Adipokinetic hormone (Pyrap-AKH) enhances the effect of a pyrethroid insecticide against the firebug Pyrrhocoris apterus. Pest Manag. Sci. 2010;66:425–431. doi: 10.1002/ps.1894. PubMed DOI
Velki M., Kodrík D., Večeřa J., Hackenberger B.K., Socha R. Oxidative stress elicited by insecticides: A role for the adipokinetic hormone. Gen. Comp. Endocrinol. 2011;172:77–84. doi: 10.1016/j.ygcen.2010.12.009. PubMed DOI
Plavšin I., Stašková T., Šerý M., Smýkal V., Hackenberger H.K., Kodrík D. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects. Comp. Biochem. Physiol. C. 2015;170:19–27. doi: 10.1016/j.cbpc.2015.01.005. PubMed DOI
Kodrík D., Socha R., Šimek P., Zemek R., Goldsworthy G.J. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera) Insect Biochem. Mol. Biol. 2000;30:489–498. doi: 10.1016/S0965-1748(00)00025-4. PubMed DOI
Večeřa J., Krishnan N., Mithöfer A., Vogele H., Kodrík D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp. Biochem. Physiol. C. 2012;155:389–395. doi: 10.1016/j.cbpc.2011.10.009. PubMed DOI
Jedlička P., Steinbauerová V., Šimek P., Zahradníčková H. Functional characterization of the adipokinetic hormone in the pea aphid, Acyrthosiphon pisum. Comp. Biochem. Physiol. 2012;162:51–58. doi: 10.1016/j.cbpa.2012.02.004. PubMed DOI
Goldsworthy G.J., Opoku-Ware K., Mullen L.M. Adipokinetic hormone and the immune responses of locusts to infection. Ann. N. Y. Acad. Sci. 2005;1040:106–113. doi: 10.1196/annals.1327.013. PubMed DOI
Mullen L.M., Goldsworthy G.J. Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin. J. Insect Physiol. 2006;52:389–398. doi: 10.1016/j.jinsphys.2005.10.008. PubMed DOI
Kodrík D., Socha R., Zemek R. Topical application of Pya-AKH stimulates lipid mobilization and locomotion in the flightless bug, Pyrrhocoris apterus (L.) (Heteroptera) Physiol. Entomol. 2002;27:15–20. doi: 10.1046/j.1365-3032.2002.00261.x. DOI
Sajwan S., Sidorov R., Stašková T., Žaloudíková A., Takasu J., Kodrík D., Žurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect Biochem. Mol. Biol. 2015;61:79–86. doi: 10.1016/j.ibmb.2015.01.011. PubMed DOI
Carlisle J., Loughton B.G. Adipokinetic hormone inhibits protein synthesis in locusta. Nature. 1979;282:420–421. doi: 10.1038/282420a0. DOI
Kodrík D., Goldsworthy G.J. Inhibition of RNA synthesis by adipokinetic hormones and brain factor(s) in adult fat body of Locusta migratoria. J. Insect Physiol. 1995;41:127–133. doi: 10.1016/0022-1910(94)00096-Y. DOI
Lemaitre B., Hoffmann J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007;25:697–743. doi: 10.1146/annurev.immunol.25.022106.141615. PubMed DOI
Candy D.J. Adipokinetic hormones concentrations in the haemolymph of Schistocerca gregaria, measured by radioimmunoassay. Insect Biochem. Mol. Biol. 2002;32:1361–1367. doi: 10.1016/S0965-1748(02)00056-5. PubMed DOI
Kodrík D., Krishnan N., Habuštová O. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress? Peptides. 2007;28:974–980. doi: 10.1016/j.peptides.2007.01.017. PubMed DOI
Karbusová N., Gautam U.K., Kodrík D. Effect of natural toxins and adipokinetic hormones on the activity of digestive enzymes in the midgut of the cockroach Periplaneta americana. Arch. Insect Biochem. Physiol. 2019;101:e21586. PubMed
Goldsworthy G.J. Insect adipokinetic hormones: Are they the insect glucagons. In: Davey K.G., Peter R.E., Tobe S.S., editors. Perspectives in Endocrinology, Proceedings of XII. International Congress of Comparative Endocrinology, Toronto, Canada, 16–21 May 1993. National Research Council of Canada; Ottawa, ON, Canada: 1994. pp. 486–492.
Kodrík D., Socha R. The effect of insecticide on adipokinetic hormone titre in insect body. Pest Manag. Sci. 2005;61:1077–1082. doi: 10.1002/ps.1087. PubMed DOI
Zemek R., Prenerová E., Weyda F. The first record of entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycota: Hyphomycetes) on the hibernating pupae of Cameraria ohridella (Lepidoptera: Gracillariidae) Entomol. Res. 2007;37:A135–A136.
Prenerová E., Zemek R., Weyda F., Volter L. Strain of entomopathogenic fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the method of controlling insect and mite pests. 08574566. U.S. Patent. 2013 Nov 5;
Prenerová E., Zemek R., Weyda F., Volter L. Strain of entomopathogenic fungus Isaria fumosorosea CCM 8367 (CCEFO.011.PFR) and the method for controlling insect and mite pests. EP2313488. EPO patent. 2015 Apr 29;
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
Jaffe H., Raina A.K., Riley C.T., Fraser B.A., Bird T.G., Tseng C.M., Zhang Y.S., Hayes D.K. Isolation and primary structure of a neuropeptide hormone from Heliothis zea with hypertrehalosemic and adipokinetic activities. Biochem. Biophys. Res. Commun. 1988;155:344–350. doi: 10.1016/S0006-291X(88)81091-X. PubMed DOI
Gäde G., Marco H.G., Šimek P., Audsley N., Clark K.D., Weaver R.J. Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: A case study with beetles and moths. Peptides. 2008;29:1124–1139. doi: 10.1016/j.peptides.2008.03.002. PubMed DOI
Ziegler R., Eckart K., Schwarz H., Keller R. Amino acid sequence of Manduca sexta adipokinetic hormone elucidated by combined fast atom bombardment (FAB)/tandem mass spectrometry. Biochem. Biophys. Res. Commun. 1985;133:337–342. doi: 10.1016/0006-291X(85)91880-7. PubMed DOI
Withers P.C. Measurement of VO2, VCO2 and evaporative water loss with a flow-through mask. J. Appl. Physiol. 1977;42:120–123. doi: 10.1152/jappl.1977.42.1.120. PubMed DOI