HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P41 EB027061
NIBIB NIH HHS - United States
FDN-143263
CIHR - Canada
P41 EB015894
NIBIB NIH HHS - United States
P30 NS076408
NINDS NIH HHS - United States
PubMed
33067520
PubMed Central
PMC7567840
DOI
10.1038/s41598-020-70297-3
PII: 10.1038/s41598-020-70297-3
Knihovny.cz E-resources
- MeSH
- Biomedical Engineering MeSH
- Diffusion Magnetic Resonance Imaging * MeSH
- Adult MeSH
- Spinal Cord Compression diagnostic imaging pathology MeSH
- Cervical Vertebrae pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Spinal Cord Diseases diagnostic imaging pathology MeSH
- Signal-To-Noise Ratio MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Cluster Analysis MeSH
- Case-Control Studies MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy. Aim of the study is to present a fast multi-shell HARDI-ZOOMit dMRI protocol and validate its usability to detect microstructural myelopathy in NMDCCC patients. In 7 young healthy volunteers, 13 age-comparable healthy controls, 18 patients with mild NMDCCC and 15 patients with severe NMDCCC, the protocol provided higher signal-to-noise ratio, enhanced visualization of white/gray matter structures in microstructural maps, improved dMRI metric reproducibility, preserved sensitivity (SE = 87.88%) and increased specificity (SP = 92.31%) of control-patient group differences when compared to DTI-RESOLVE protocol (SE = 87.88%, SP = 76.92%). Of the 56 tested microstructural parameters, HARDI-ZOOMit yielded significant patient-control differences in 19 parameters, whereas in DTI-RESOLVE data, differences were observed in 10 parameters, with mostly lower robustness. Novel marker the white-gray matter diffusivity gradient demonstrated the highest separation. HARDI-ZOOMit protocol detected larger number of crossing fibers (5-15% of voxels) with physiologically plausible orientations than DTI-RESOLVE protocol (0-8% of voxels). Crossings were detected in areas of dorsal horns and anterior white commissure. HARDI-ZOOMit protocol proved to be a sensitive and practical tool for clinical quantitative spinal cord imaging.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Biomedical Engineering University Hospital Olomouc 779 00 Olomouc Czech Republic
Department of Neurology Palacký University 779 00 Olomouc Czech Republic
Department of Neurology University Hospital Brno 625 00 Brno Czech Republic
Department of Neurology University Hospital Olomouc 779 00 Olomouc Czech Republic
Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
High Field MR Centre Medical University of Vienna Vienna Austria
Institute of Biomedical Engineering Polytechnique Montreal Montreal Canada
See more in PubMed
Stejskal EO, Tanner JE. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965;42:288–292. doi: 10.1063/1.1695690. DOI
Le Bihan D, et al. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–407. doi: 10.1148/radiology.161.2.3763909. PubMed DOI
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J . 1994;66:259–267. doi: 10.1016/S0006-3495(94)80775-1. PubMed DOI PMC
Clark CA, Werring DJ, Miller DH. Diffusion imaging of the spinal cord in vivo: Estimation of the principal diffusivities and application to multiple sclerosis. Magn. Reson. Med. 2000;43:133–138. doi: 10.1002/(SICI)1522-2594(200001)43:1<133::AID-MRM16>3.0.CO;2-X. PubMed DOI
Wheeler-Kingshott C, et al. The current state-of-the-art of spinal cord imaging: Applications. NeuroImage. 2014;84:1082–1093. doi: 10.1016/j.neuroimage.2013.04.124. PubMed DOI PMC
Martin AR, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage. Clin. 2016;10:192–238. doi: 10.1016/j.nicl.2015.11.019. PubMed DOI PMC
Cohen-Adad J, et al. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. NeuroImage. 2011;55:1024–1033. doi: 10.1016/j.neuroimage.2010.11.089. PubMed DOI
Martin AR, et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. Am. J. Neuroradiol. 2017;38:1266–1273. doi: 10.3174/ajnr.A5162. PubMed DOI PMC
Bede P, et al. Spinal cord markers in ALS: Diagnostic and biomarker considerations. Amyotroph. Lateral Scler. 2012;13:407–415. doi: 10.3109/17482968.2011.649760. PubMed DOI
Zhang J, et al. Diffusion tensor magnetic resonance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J. Neurosci. 2009;29:3160–3171. doi: 10.1523/JNEUROSCI.3941-08.2009. PubMed DOI PMC
Huffnagel IC, et al. Longitudinal diffusion MRI as surrogate outcome measure for myelopathy in adrenoleukodystrophy. Neurology. 2019;93:e2133–e2143. doi: 10.1212/WNL.0000000000008572. PubMed DOI
Keřkovský M, et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression. Spine. 2012;37:48–56. doi: 10.1097/BRS.0b013e31820e6c35. PubMed DOI
Jones JGA, Cen SY, Lebel RM, Hsieh PC, Law M. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. Am. J. Neuroradiol. 2013;34:471–478. doi: 10.3174/ajnr.A3199. PubMed DOI PMC
Wen C-Y, Cui J-L, Mak K-C, Luk KDK, Hu Y. Diffusion tensor imaging of somatosensory tract in cervical spondylotic myelopathy and its link with electrophysiological evaluation. Spine J. 2014;14:1493–1500. doi: 10.1016/j.spinee.2013.08.052. PubMed DOI
Guan X, et al. Diffusion tensor imaging studies of cervical spondylotic myelopathy: A systemic review and meta-analysis. PLoS One. 2015;10:e0117707. doi: 10.1371/journal.pone.0117707. PubMed DOI PMC
Keřkovský M, et al. Spinal cord MR diffusion properties in patients with degenerative cervical cord compression. J. Neuroimaging. 2017;27:149–157. doi: 10.1111/jon.12372. PubMed DOI
Vedantam A, et al. Diffusion tensor imaging correlates with short-term myelopathy outcome in patients with cervical spondylotic myelopathy. World Neurosurg. 2017;97:489–494. doi: 10.1016/j.wneu.2016.03.075. PubMed DOI
Martin A, et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One. 2018;13:e0195733. doi: 10.1371/journal.pone.0195733. PubMed DOI PMC
Martin AR, et al. Clinically feasible microstructural MRI to quantify cervical spinal cord tissue injury using DTI, MT, and T2*-weighted imaging: Assessment of normative data and reliability. Am. J. Neuroradiol. 2017;38:1257–1265. doi: 10.3174/ajnr.A5163. PubMed DOI PMC
Martin AR, et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open. 2018;8:e019809. doi: 10.1136/bmjopen-2017-019809. PubMed DOI PMC
Kovalova I, et al. Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine. 2016;41:1908–1916. doi: 10.1097/BRS.0000000000001842. PubMed DOI
Wilson JR, et al. Frequency, timing, and predictors of neurological dysfunction in the nonmyelopathic patient with cervical spinal cord compression, canal stenosis, and/or ossification of the posterior longitudinal ligament. Spine. 2013;38:S37–S54. doi: 10.1097/brs.0b013e3182a7f2e7. PubMed DOI
Ellingson BM, Salamon N, Woodworth DC, Yokata H, Holly LT. Reproducibility, temporal stability, and functional correlation of diffusion MR measurements within the spinal cord in patients with asymptomatic cervical stenosis or cervical myelopathy. J. Neurosurg. Spine. 2018;28:472–480. doi: 10.3171/2017.7.SPINE176. PubMed DOI PMC
Tuch DS, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 2002;48:577–582. doi: 10.1002/mrm.10268. PubMed DOI
Cohen-Adad J, et al. Detection of multiple pathways in the spinal cord using q-ball imaging. NeuroImage. 2008;42:739–749. doi: 10.1016/j.neuroimage.2008.04.243. PubMed DOI
Lundell H, Nielsen JB, Ptito M, Dyrby TB. Distribution of collateral fibers in the monkey cervical spinal cord detected with diffusion-weighted magnetic resonance imaging. NeuroImage. 2011;56:923–929. doi: 10.1016/j.neuroimage.2011.02.043. PubMed DOI
Calabrese E, et al. Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. NeuroImage Clin. 2018;18:963–971. doi: 10.1016/j.nicl.2018.03.029. PubMed DOI PMC
Labounek R, et al. Fast in vivo high-resolution diffusion MRI of the human cervical spinal cord microstructure. IFMBE Proceed. World Congress Med. Phys. Biomed. Eng. 2019;68:3–7. doi: 10.1007/978-981-10-9035-6_1. DOI
Samson RS, et al. ZOOM or non-ZOOM? Assessing spinal cord diffusion tensor imaging protocols for multi-centre studies. PLoS One. 2016;11:e0155557. doi: 10.1371/journal.pone.0155557. PubMed DOI PMC
Behrens TEJ, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 2003;50:1077–1088. doi: 10.1002/mrm.10609. PubMed DOI
Panagiotaki E, et al. Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison. NeuroImage. 2012;59:2241–2254. doi: 10.1016/j.neuroimage.2011.09.081. PubMed DOI
Cohen-Adad J. High-resolution DWI in brain and spinal cord with syngo RESOLVE. MAGNETOM Flash Mag. MRI. 2012;2:16–23.
Zhang BT, et al. Diffusion tensor imaging of spinal microstructure in healthy adults: Improved resolution with the readout segmentation of long variable echo-trains. Neural Regener. Res. 2017;12:2067–2070. doi: 10.4103/1673-5374.221166. PubMed DOI PMC
Nouri A, et al. MRI analysis of the combined prospectively collected AOSpine North America and international data. Spine. 2017;42:1058–1067. doi: 10.1097/BRS.0000000000001981. PubMed DOI
Kadanka Z, et al. Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 2017;7:e00797. doi: 10.1002/brb3.797. PubMed DOI PMC
Tuch DS. Q-ball imaging. Magn. Reson. Med. 2004;52:1358–1372. doi: 10.1002/mrm.20279. PubMed DOI
Taso M, et al. Tract-specific and age-related variations of the spinal cord microstructure: A multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT) NMR Biomed. 2016;29:817–832. doi: 10.1002/nbm.3530. PubMed DOI
Bishop CM. Pattern Recognition and Machine Learning. Berlin: Springer; 2006.
Massire A, et al. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Magn. Reson. Med. 2018;80:947–957. doi: 10.1002/mrm.27087. PubMed DOI
Lévy S, et al. White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage. 2015;119:262–271. doi: 10.1016/j.neuroimage.2015.06.040. PubMed DOI
Cui JL, et al. Quantitative assessment of column-specific degeneration in cervical spondylotic myelopathy based on diffusion tensor tractography. Eur. Spine J. 2015;24:41–47. doi: 10.1007/s00586-014-3522-5. PubMed DOI
Grabher P, Mohammadi S, David G, Freund P. Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy. J. Neurotrauma. 2017;34:2329–2334. doi: 10.1089/neu.2017.4980. PubMed DOI
Wang KY, et al. Tract-specific diffusion tensor imaging in cervical spondylotic myelopathy before and after decompressive spinal surgery: Preliminary results. Clin. Neuroradiol. 2017;27:61–69. doi: 10.1007/s00062-015-0418-7. PubMed DOI
Pisharady P, et al. Tract-specific analysis improves sensitivity of spinal cord diffusion MRI to cross-sectional and longitudinal changes in Amyotrophic Lateral Sclerosis. Commun. Biol. 2020;3:370. doi: 10.1038/s42003-020-1093-z. PubMed DOI PMC
Bednarik J, et al. Presymptomatic spondylotic cervical myelopathy: An updated predictive model. Eur. Spine J. 2008;17:421–431. doi: 10.1007/s00586-008-0585-1. PubMed DOI PMC
Ellingson BM, Salamon N, Hardy AJ, Holly LT. Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion mri and proton mr spectroscopy. PLoS One. 2015;10:e0139451. doi: 10.1371/journal.pone.0139451. PubMed DOI PMC
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61:1000–1016. doi: 10.1016/j.neuroimage.2012.03.072. PubMed DOI
Grussu F, Schneider T, Zhang H, Alexander DC, Wheeler-Kingshott CAM. Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo. NeuroImage. 2015;111:590–601. doi: 10.1016/j.neuroimage.2015.01.045. PubMed DOI
By S, Xu J, Box BA, Bagnato FR, Smith SA. Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. NeuroImage Clin. 2017;15:333–342. doi: 10.1016/j.nicl.2017.05.010. PubMed DOI PMC
Schilling KG, et al. Diffusion MRI microstructural models in the cervical spinal cord - Application, normative values, and correlations with histological analysis. NeuroImage. 2019;201:116026. doi: 10.1016/j.neuroimage.2019.116026. PubMed DOI PMC
Farooq H, et al. Microstructure imaging of crossing (MIX) white matter Fibers from diffusion MRI. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep38927. PubMed DOI PMC
Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage. 2005;27:48–58. doi: 10.1016/j.neuroimage.2005.03.042. PubMed DOI
Duval T, Smith V, Stikov N, Klawiter EC, Cohen-Adad J. Scan-rescan of axcaliber, macromolecular tissue volume, and g-ratio in the spinal cord. Magn. Reson. Med. 2018;79:2759–2765. doi: 10.1002/mrm.26945. PubMed DOI PMC
Alexander DC, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage. 2010;52:1374–1389. doi: 10.1016/j.neuroimage.2010.05.043. PubMed DOI
Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage. 2014;103:411–426. doi: 10.1016/j.neuroimage.2014.07.061. PubMed DOI
Grussu F, Schneider T, Zhang H, Alexander DC, Wheeler-Kingshott CAM. Single-shell diffusion MRI NODDI with in vivo cervical cord data. Proc. Intl. Soc. Magn. Reson. Med. 2014;22:1716.
Caruyer E, Lenglet C, Sapiro G, Deriche R. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 2013;69:1534–1540. doi: 10.1002/mrm.24736. PubMed DOI PMC
Gros C, et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage. 2018;184:901–915. doi: 10.1016/j.neuroimage.2018.09.081. PubMed DOI PMC
Dietrich O, Raya G, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. J. Magn. Reson. Imaging. 2007;26:375–385. doi: 10.1002/jmri.20969. PubMed DOI
De Leener B, et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage. 2017;145:24–43. doi: 10.1016/j.neuroimage.2016.10.009. PubMed DOI
Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools (ANTs). Insight J.2, 1–35. http://hdl.handle.net/10380/3113 (2009).
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Tustison NJ, Cook PA, Gee JC. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging. 2011;29:1310–1320. doi: 10.1109/TMI.2010.2046908.N4ITK. PubMed DOI PMC
Jan J. Medical Image Processing, Reconstruction and Restoration: Concepts and Methods. Boca Raton: Taylor; 2006.
De Leener B, Cohen-Adad J, Kadoury S. Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling. IEEE Trans. Med. Imaging. 2015;34:1705–1718. doi: 10.1109/TMI.2015.2437192. PubMed DOI
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008;12:26–41. doi: 10.1016/j.media.2007.06.004. PubMed DOI PMC
Perone CS, Calabrese E, Cohen-Adad J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci. Rep. 2018;8:1–13. doi: 10.1038/s41598-018-24304-3. PubMed DOI PMC
Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage. 2003;20:870–888. doi: 10.1016/S1053-8119(03)00336-7. PubMed DOI
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage. 2016;125:1063–1078. doi: 10.1016/j.neuroimage.2015.10.019. PubMed DOI PMC
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox
Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review
Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox
Generic acquisition protocol for quantitative MRI of the spinal cord
Walk and Run Test in Patients with Degenerative Compression of the Cervical Spinal Cord