Ambulatory Neuroproprioceptive Facilitation and Inhibition Physical Therapy Improves Clinical Outcomes in Multiple Sclerosis and Modulates Serum Level of Neuroactive Steroids: A Two-Arm Parallel-Group Exploratory Trial
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33142850
PubMed Central
PMC7693100
DOI
10.3390/life10110267
PII: life10110267
Knihovny.cz E-zdroje
- Klíčová slova
- cortisol, dehydroepiandrosterone, multiple sclerosis, neuroactive steroids, neuroproprioceptive facilitation and inhibition, physical therapy,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Background: Only few studies have monitored the potential of physical activity training and physical therapy to modulate the reaction of the endocrine system. In this study, the effect of neuroproprioceptive facilitation and inhibition physical therapy on clinical outcomes and neuroactive steroids production in people with multiple sclerosis was evaluated. Moreover, we were interested in the factors that influence the treatment effect. METHODS: In total, 44 patients with multiple sclerosis were randomly divided into two groups. Each group underwent a different kind of two months ambulatory therapy (Motor program activating therapy and Vojta's reflex locomotion). During the following two months, participants were asked to continue the autotherapy. Primary (serum level of cortisol, cortisone, 7α-OH-DHEA, 7β-OH-DHEA, 7-oxo-DHEA, DHEA) and secondary (balance, cognition and patient-reported outcomes) outcomes were examined three times (pre, post, and washout assessments). RESULTS: In both groups, there is a decreasing trend of 7-oxo-DHEA concentration in post-assessment and 7β-OH-DHEA in washout versus pre-assessment. A higher impact on neuroactive steroids is visible after Vojta's reflex locomotion. As for clinical outcomes, the Paced Auditory Serial Addition Test and Multiple Sclerosis Impact Scale significantly improved between post-assessment and washout assessment. The improvement was similar for both treatments. CONCLUSIONS: Neuroproprioceptive facilitation and inhibition improved the clinical outcomes and led to non-significant changes in neuroactive steroids. Trial registration (NCT04379193).
Department of Neurology 3rd Faculty of Medicine Charles University 10000 Prague Czech Republic
Department of Steroids and Proteofactors Institute of Endocrionology 11694 Prague Czech Republic
Zobrazit více v PubMed
Feys P., Giovannoni G., Dijsselbloem N., Centonze D., Eelen P., Andersen S.L. The importance of a multi-disciplinary perspective and patient activation programmes in MS management. Mult. Scler. J. 2016;22(Suppl. 2):34–46. doi: 10.1177/1352458516650741. PubMed DOI
Bernard C., Kerlero C., De Rosbo N.K. Multiple sclerosis: An autoimmune disease of multifactorial etiology. Curr. Opin. Immunol. 1992;4:760–765. doi: 10.1016/0952-7915(92)90058-M. PubMed DOI
Michelson D., Stone L., Galliven E., Magiakou M.A., Chrousos G.P., Sternberg E.M., Gold P.W. Multiple sclerosis is associated with alterations in hypothalamic-pituitary-adrenal axis function. J. Clin. Endocrinol. Metab. 1994;79:848–853. doi: 10.1210/jcem.79.3.8077372. PubMed DOI
Bičíková M., Tallová J., Hill M., Krausová Z., Hampl R. Serum concentrations of some neuroactive steroids in women suffering from mixed anxiety-depressive disorder. Neurochem. Res. 2000;25:1623–1627. doi: 10.1023/A:1026622704704. PubMed DOI
Daoudal G., Debanne D. Long-Term Plasticity of Intrinsic Excitability: Learning Rules and Mechanisms. Learn. Mem. 2003;10:456–465. doi: 10.1101/lm.64103. PubMed DOI
Hampl R., Hill M., Stárka L. DHEA Metabolites during the Life Span. In: Morfin R., editor. DHEA and the Brain. Taylor & Francis; London, UK: New York, NY, USA: 2003.
El Kihel L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)—Recent reports. Steroids. 2012;77:10–26. doi: 10.1016/j.steroids.2011.09.008. PubMed DOI
Stárka L., Dušková M., Hill M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid Biochem. Mol. Biol. 2015;145:254–260. doi: 10.1016/j.jsbmb.2014.03.008. PubMed DOI
Téllez N., Comabella M., Julià E.V., Río J., Tintoré M., Brieva L., Nos C., Montalban X. Fatigue in progressive multiple sclerosis is associated with low levels of dehydroepiandrosterone. Mult. Scler. J. 2006;12:487–494. doi: 10.1191/135248505ms1322oa. PubMed DOI
Kümpfel T., Bergh F.T., Friess E., Uhr M., Yassouridis A., Trenkwalder C., Holsboer F. Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releasing hormone test in patients with multiple sclerosis. Neuroendocrinology. 1999;70:431–438. doi: 10.1159/000054505. PubMed DOI
Doostzadeh J., Cotillon A.-C., Benalychérif A., Morfin R. Inhibition studies of dehydroepiandrosterone 7α- and 7β-hydroxylation in mouse liver microsomes. Steroids. 1998;63:608–614. doi: 10.1016/S0039-128X(98)00071-3. PubMed DOI
Akwa Y., Morfin R.F., Robel P., Baulieu E.E. Neurosteroid metabolism. 7α-Hydroxylation of dehydroepiandrosterone and pregnenolone by rat brain microsomes. Biochem. J. 1992;288 Pt 3:959–964. doi: 10.1042/bj2880959. PubMed DOI PMC
Morfin R., Lafaye P., Cotillon A.C., Nato F., Chmielewski V., Pompon D. 7 alpha-hydroxy-dehydroepiandrosterone and immune response. Ann. N. Y. Acad. Sci. 2000;917:971–982. doi: 10.1111/j.1749-6632.2000.tb05464.x. PubMed DOI
Corpechot C., Robel P., Axelson M., Sjovall J., Baulieu E.E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. USA. 1981;78:4704–4707. doi: 10.1073/pnas.78.8.4704. PubMed DOI PMC
Baulieu E., Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids. 2000;65:605–612. doi: 10.1016/S0039-128X(00)00173-2. PubMed DOI
Bičíková M., Řípová D., Hill M., Jirák R., Havlikova H., Tallova J., Hampl R. Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer’s disease and vascular dementia. Clin. Chem. Lab. Med. 2004;42:518–524. doi: 10.1515/CCLM.2004.088. PubMed DOI
Friess E., Schiffelholz T., Steckler T., Steiger A. Dehydroepiandrosterone—A neurosteroid. Eur. J. Clin. Investig. 2000;30:46–50. doi: 10.1046/j.1365-2362.2000.0300s3046.x. PubMed DOI
Allolio B., Arlt W. DHEA treatment: Myth or reality? Trends Endocrinol. Metab. 2002;13:288–294. doi: 10.1016/S1043-2760(02)00617-3. PubMed DOI
Li A., Bigelow J.C. The 7-hydroxylation of dehydroepiandrosterone in rat brain. Steroids. 2010;75:404–410. doi: 10.1016/j.steroids.2010.02.003. PubMed DOI
Hampl R., Hill M., Šterzl I., Starka L. Immunomodulatory 7-hydroxylated metabolites of dehydroepiandrosterone are present in human semen. J. Steroid Biochem. Mol. Biol. 2000;75:273–276. doi: 10.1016/S0960-0760(00)00175-8. PubMed DOI
Pelissier M.-A., Trap C., Malewiak M.-I., Morfin R. Antioxidant effects of dehydroepiandrosterone and 7α-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids. 2004;69:137–144. doi: 10.1016/j.steroids.2003.12.006. PubMed DOI
Akwa Y., Young J., Kabbadj K., Sancho M., Zucman D., Vourc’H C., Jung-Testas I., Hu Z., Le Goascogne C., Jo D., et al. Neurosteroids: Biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J. Steroid Biochem. Mol. Biol. 1991;40:71–81. doi: 10.1016/0960-0760(91)90169-6. PubMed DOI
Diamond D.M., Branch B.J., Fleshner M. The neurosteroid dehydroepiandrosterone sulfate (DHEAS) enhances hippocampal primed burst, but not long-term, potentiation. Neurosci. Lett. 1996;202:204–208. doi: 10.1016/0304-3940(95)12233-8. PubMed DOI
Khan F., Amatya B. Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews. Arch. Phys. Med. Rehabil. 2017;98:353–367. doi: 10.1016/j.apmr.2016.04.016. PubMed DOI
Kern S., Ziemssen F. Review: Brain—Immune communication psychoneuroimmunology of multiple sclerosis. Mult. Scler. J. 2008;14:6–21. doi: 10.1177/1352458507079657. PubMed DOI
Emolinari M., Filippini V., Leggio M.G. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–870. doi: 10.1016/S0306-4522(02)00024-6. PubMed DOI
Heaney J.L.J., Carroll D., Phillips A.C. DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. AGE. 2011;35:395–405. doi: 10.1007/s11357-011-9345-y. PubMed DOI PMC
Buford T., Willoughby D.S. Impact of DHEA(S) and cortisol on immune function in aging: A brief review. Appl. Physiol. Nutr. Metab. 2008;33:429–433. doi: 10.1139/H08-013. PubMed DOI
Deuschle M., Gotthardt U., Schweiger U., Weber B., Körner A., Schmider J., Standhardt H., Lammers C.-H., Heuser I. With aging in humans the activity of the hypothalamus-pituitary-adrenal system increases and its diurnal amplitude flattens. Life Sci. 1997;61:2239–2246. doi: 10.1016/S0024-3205(97)00926-0. PubMed DOI
Goodin D.S., Ebers G.C., Johnson K.P., Rodriguez M., Sibley W.A., Wolinsky J.S. The relationship of MS to physical trauma and psychological stress: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1999;52:1737. doi: 10.1212/WNL.52.9.1737. PubMed DOI
Martinelli V. Trauma, stress and multiple sclerosis. Neurol. Sci. 2000;21:S849–S852. doi: 10.1007/s100720070024. PubMed DOI
White L.J., Castellano V. Exercise and brain health—Implications for multiple sclerosis: Part II—Immune factors and stress hormones. Sports Med. 2008;38:179–186. doi: 10.2165/00007256-200838030-00001. PubMed DOI
Heesen C., Gold S.M., Hartmann S., Mladek M., Reer R., Braumann K.-M., Wiedemann K., Schulz K.-H. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. Brain Behav. Immun. 2003;17:473–481. doi: 10.1016/S0889-1591(03)00077-1. PubMed DOI
Schulz K.-H., Gold S.M., Witte J., Bartsch K., Lang U.E., Hellweg R., Reer R., Braumann K.-M., Heesen C. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J. Neurol. Sci. 2004;225:11–18. doi: 10.1016/j.jns.2004.06.009. PubMed DOI
Zhu J.-N., Yung W.-H., Chow B.K.C., Chan Y.-S., Wang J.-J. The cerebellar-hypothalamic circuits: Potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res. Rev. 2006;52:93–106. doi: 10.1016/j.brainresrev.2006.01.003. PubMed DOI
Řasová K., Dolezil D., Kalistova H., Kucera P., Juzova O., Zimova D., Medova E., Jandova D., Tintera J., Ibrahim I., et al. Physiotherapy as an immunoactive therapy? A pilot study. Neuroendocr. Lett. 2012;33:67–75. PubMed
Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2011;69:292–302. doi: 10.1002/ana.22366. PubMed DOI PMC
Kurtzke J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology. 1983;33:1444. doi: 10.1212/WNL.33.11.1444. PubMed DOI
Pavlikova M., Cattaneo D., Jonsdottir J., Gervasoni E., Stetkarova I., Angelova G., Markova M., Prochazkova M., Prokopiusova T., Hruskova N., et al. The impact of balance specific physiotherapy, intensity of therapy and disability on static and dynamic balance in people with multiple sclerosis: A multi-center prospective study. Mult. Scler. Relat. Disord. 2020;40:101974. doi: 10.1016/j.msard.2020.101974. PubMed DOI
Borg G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982;14:377–381. doi: 10.1249/00005768-198205000-00012. PubMed DOI
Morgan J.A., Corrigan F., Baune B.T. Effects of physical exercise on central nervous system functions: A review of brain region specific adaptations. J. Mol. Psychiatry. 2015;3:1–13. doi: 10.1186/s40303-015-0010-8. PubMed DOI PMC
Rasova K., Prochazkova M., Tintera J., Ibrahim I., Zimova D., Stetkarova I. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis. Int. J. Rehabil. Res. 2015;38:49–54. doi: 10.1097/MRR.0000000000000090. PubMed DOI
Spanhelova S. Neurorehabilitation of People with Impaired Mobility—Therapeutic Interventions and Assessment Tools. Third Medical Faculty, Charles University; Prague, Czech Republic: 2017. Reflex locomotion according to Prof. Václav Vojta.
Sosvorová L., Vitku J., Chlupacova T., Mohapl M., Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids. 2015;98:1–8. doi: 10.1016/j.steroids.2015.01.019. PubMed DOI
Berg K., Wood-Dauphinee S., Williams J.I. The Balance Scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabilitation Med. 1995;27:27–36. PubMed
Podsiadlo D., Richardson S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x. PubMed DOI
Fischer J.S., Rudick R.A., Cutter G.R., Reingold S.C. The Multiple Sclerosis Functional Composite Measure (MSFC): An integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult. Scler. 1999;5:244–250. doi: 10.1177/135245859900500409. PubMed DOI
Hobart J., Lamping D., Fitzpatrick R., Riazi A., Thompson A. The Multiple Sclerosis Impact Scale (MSIS-29): A new patient-based outcome measure. Brain. 2001;124:962–973. doi: 10.1093/brain/124.5.962. PubMed DOI
Fisk J.D., Ritvo P.G., Ross L., Haase D.A., Marrie T.J., Schlech W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994;18:S79–S83. doi: 10.1093/clinids/18.Supplement_1.S79. PubMed DOI
Hobart J.C., Riazi A., Lamping D.L., Fitzpatrick R., Thompson A.J. Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale (MSWS-12) Neurology. 2003;60:31–36. doi: 10.1212/WNL.60.1.31. PubMed DOI
Jandova D., BiČíková M., Hill M., Hampl R. Health resort treatment improved the neurosteroid profile in thyroidectomized women. Endocr. Regul. 2008;42:17–22. PubMed
Honcu P., Hill M., BiČíková M., Jandová D., Velíková M., Kajzar J., Kolatorova L., Bešťák J., Máčová L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC
Caruso D., Melis M., Fenu G., Giatti S., Romano S., Grimoldi M., Crippa D., Marrosu M.G., Cavaletti G., Melcangi R.C. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J. Neurochem. 2014;130:591–597. doi: 10.1111/jnc.12745. PubMed DOI
De Kloet E., Meijer O., De Nicola A., De Rijk R., Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front. Neuroendocr. 2018;49:124–145. doi: 10.1016/j.yfrne.2018.02.003. PubMed DOI
Chahal H.S., Drake W.M. The endocrine system and ageing. J. Pathol. 2007;211:173–180. doi: 10.1002/path.2110. PubMed DOI
Řasová K., Krasensky J., Havrdova E., Obenberger J., Seidel Z., Dolezal O., Rexova P., Zalisova M. Is it possible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple sclerosis patients? A pilot project. Clin. Rehabil. 2005;19:170–181. doi: 10.1191/0269215505cr831oa. PubMed DOI
Tavazzi E., Bergsland N., Cattaneo D., Gervasoni E., Laganà M.M., DiPasquale O., Grosso C., Saibene F.L., Baglio F., Rovaris M. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: A structural and functional MRI study. J. Neurol. 2018;265:1393–1401. doi: 10.1007/s00415-018-8859-y. PubMed DOI
Prosperini L., Fanelli F., Petsas N., Sbardella E., Tona F., Raz E., Fortuna D., De Angelis F., Pozzilli C., Pantano P. Multiple Sclerosis: Changes in Microarchitecture of White Matter Tracts after Training with a Video Game Balance Board. Radiology. 2014;273:529–538. doi: 10.1148/radiol.14140168. PubMed DOI
Ysrraelit M.C., Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2018;156:9–22. doi: 10.1111/imm.13004. PubMed DOI PMC
Chidi-Ogbolu N., Baar K. Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front. Physiol. 2019;9:1834. doi: 10.3389/fphys.2018.01834. PubMed DOI PMC
ClinicalTrials.gov
NCT04379193