Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-27630X
Grantová Agentura České Republiky
PubMed
33228165
PubMed Central
PMC7711433
DOI
10.3390/vaccines8040695
PII: vaccines8040695
Knihovny.cz E-resources
- Keywords
- Bordetella pertussis, nasal colonization, vaccines, whooping cough,
- Publication type
- Journal Article MeSH
Bordetella pertussis whole-cell vaccines (wP) caused a spectacular drop of global pertussis incidence, but since the replacement of wP with acellular pertussis vaccines (aP), pertussis has resurged in developed countries within 7 to 12 years of the change from wP to aP. In the mouse infection model, we examined whether addition of further protective antigens into the aP vaccine, such as type 2 and type 3 fimbriae (FIM2/3) with outer membrane lipooligosaccharide (LOS) and/or of the adenylate cyclase toxoid (dACT), which elicits antibodies neutralizing the CyaA toxin, could enhance the capacity of the aP vaccine to prevent colonization of the nasal mucosa by B. pertussis. The addition of the toxoid and of the opsonizing antibody-inducing agglutinogens modestly enhanced the already high capacity of intraperitoneally-administered aP vaccine to elicit sterilizing immunity, protecting mouse lungs from B. pertussis infection. At the same time, irrespective of FIM2/3 with LOS and dACT addition, the aP vaccination ablated the natural capacity of BALB/c mice to clear B. pertussis infection from the nasal cavity. While wP or sham-vaccinated animals cleared the nasal infection with similar kinetics within 7 weeks, administration of the aP vaccine promoted persistent colonization of mouse nasal mucosa by B. pertussis.
See more in PubMed
Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014;12:274–288. doi: 10.1038/nrmicro3235. PubMed DOI PMC
Cherry J.D. The 112-Year Odyssey of Pertussis and Pertussis Vaccines-Mistakes Made and Implications for the Future. J. Pediatr. Infect. Dis. Soc. 2019;8:334–341. doi: 10.1093/jpids/piz005. PubMed DOI
Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI
Klein N.P., Baine Y., Kolhe D., Baccarini C.I., Miller J.M., Van der Wielen M. Five-year Antibody Persistence and Booster Response After 1 or 2 Doses of Meningococcal A, C, W and Y Tetanus Toxoid Conjugate Vaccine in Healthy Children. Pediatr. Infect. Dis. J. 2016;35:662–672. doi: 10.1097/INF.0000000000001123. PubMed DOI
Koepke R., Eickhoff J.C., Ayele R.A., Petit A.B., Schauer S.L., Hopfensperger D.J., Conway J.H., Davis J.P. Estimating the effectiveness of tetanus-diphtheria-acellular pertussis vaccine (Tdap) for preventing pertussis: Evidence of rapidly waning immunity and difference in effectiveness by Tdap brand. J. Infect. Dis. 2014;210:942–953. doi: 10.1093/infdis/jiu322. PubMed DOI
Shapiro E.D. Acellular vaccines and resurgence of pertussis. JAMA. 2012;308:2149–2150. doi: 10.1001/jama.2012.65031. PubMed DOI
Sheridan S.L., Ware R.S., Grimwood K., Lambert S.B. Number and order of whole cell pertussis vaccines in infancy and disease protection. JAMA. 2012;308:454–456. doi: 10.1001/jama.2012.6364. PubMed DOI
Tartof S.Y., Lewis M., Kenyon C., White K., Osborn A., Liko J., Zell E., Martin S., Messonnier N.E., Clark T.A., et al. Waning immunity to pertussis following 5 doses of DTaP. Pediatrics. 2013;131:e1047–e1052. doi: 10.1542/peds.2012-1928. PubMed DOI
Witt M.A., Arias L., Katz P.H., Truong E.T., Witt D.J. Reduced risk of pertussis among persons ever vaccinated with whole cell pertussis vaccine compared to recipients of acellular pertussis vaccines in a large US cohort. Clin. Infect. Dis. 2013;56:1248–1254. doi: 10.1093/cid/cit046. PubMed DOI
Witt M.A., Katz P.H., Witt D.J. Unexpectedly limited durability of immunity following acellular pertussis vaccination in preadolescents in a North American outbreak. Clin. Infect. Dis. 2012;54:1730–1735. doi: 10.1093/cid/cis287. PubMed DOI
Barkoff A.M., Mertsola J., Pierard D., Dalby T., Hoegh S.V., Guillot S., Stefanelli P., van Gent M., Berbers G., Vestrheim D., et al. Pertactin-deficient Bordetella pertussis isolates: Evidence of increased circulation in Europe, 1998 to 2015. Eurosurveillance. 2019;24:1700832. doi: 10.2807/1560-7917.ES.2019.24.7.1700832. PubMed DOI PMC
Hellwig S.M., Rodriguez M.E., Berbers G.A., van de Winkel J.G., Mooi F.R. Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J. Infect. Dis. 2003;188:738–742. doi: 10.1086/377283. PubMed DOI
Martin S.W., Pawloski L., Williams M., Weening K., DeBolt C., Qin X., Reynolds L., Kenyon C., Giambrone G., Kudish K., et al. Pertactin-negative Bordetella pertussis strains: Evidence for a possible selective advantage. Clin. Infect. Dis. 2015;60:223–227. doi: 10.1093/cid/ciu788. PubMed DOI
Pawloski L.C., Queenan A.M., Cassiday P.K., Lynch A.S., Harrison M.J., Shang W., Williams M.M., Bowden K.E., Burgos-Rivera B., Qin X., et al. Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clin. Vaccine Immunol. 2014;21:119–125. doi: 10.1128/CVI.00717-13. PubMed DOI PMC
Williams M.M., Sen K., Weigand M.R., Skoff T.H., Cunningham V.A., Halse T.A., Tondella M.L. CDC Pertussis Working Group. Bordetella pertussis Strain Lacking Pertactin and Pertussis Toxin. Emerg. Infect. Dis. 2016;22:319–322. doi: 10.3201/eid2202.151332. PubMed DOI PMC
Faulkner A.E., Skoff T.H., Tondella M.L., Cohn A., Clark T.A., Martin S.W. Trends in Pertussis Diagnostic Testing in the United States, 1990 to 2012. Pediatr. Infect. Dis. J. 2016;35:39–44. doi: 10.1097/INF.0000000000000921. PubMed DOI
Marchant C.D., Loughlin A.M., Lett S.M., Todd C.W., Wetterlow L.H., Bicchieri R., Higham S., Etkind P., Silva E., Siber G.R. Pertussis in Massachusetts, 1981-1991: Incidence, serologic diagnosis, and vaccine effectiveness. J. Infect. Dis. 1994;169:1297–1305. doi: 10.1093/infdis/169.6.1297. PubMed DOI
Althouse B.M., Scarpino S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13:146. doi: 10.1186/s12916-015-0382-8. PubMed DOI PMC
Warfel J.M., Zimmerman L.I., Merkel T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA. 2014;111:787–792. doi: 10.1073/pnas.1314688110. PubMed DOI PMC
Mills K.H., Ross P.J., Allen A.C., Wilk M.M. Do we need a new vaccine to control the re-emergence of pertussis? Trends Microbiol. 2014;22:49–52. doi: 10.1016/j.tim.2013.11.007. PubMed DOI
Redhead K., Watkins J., Barnard A., Mills K.H. Effective immunization against Bordetella pertussis respiratory infection in mice is dependent on induction of cell-mediated immunity. Infect. Immun. 1993;61:3190–3198. doi: 10.1128/IAI.61.8.3190-3198.1993. PubMed DOI PMC
Allen A.C., Wilk M.M., Misiak A., Borkner L., Murphy D., Mills K.H.G. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol. 2018;11:1763–1776. doi: 10.1038/s41385-018-0080-x. PubMed DOI
Misiak A., Wilk M.M., Raverdeau M., Mills K.H. IL-17-Producing Innate and Pathogen-Specific Tissue Resident Memory gammadelta T Cells Expand in the Lungs of Bordetella pertussis-Infected Mice. J. Immunol. 2017;198:363–374. doi: 10.4049/jimmunol.1601024. PubMed DOI
Ross P.J., Sutton C.E., Higgins S., Allen A.C., Walsh K., Misiak A., Lavelle E.C., McLoughlin R.M., Mills K.H. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: Towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 2013;9:e1003264. doi: 10.1371/journal.ppat.1003264. PubMed DOI PMC
Solans L., Debrie A.S., Borkner L., Aguilo N., Thiriard A., Coutte L., Uranga S., Trottein F., Martin C., Mills K.H.G., et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 2018;11:1753–1762. doi: 10.1038/s41385-018-0073-9. PubMed DOI
Warfel J.M., Edwards K.M. Pertussis vaccines and the challenge of inducing durable immunity. Curr. Opin. Immunol. 2015;35:48–54. doi: 10.1016/j.coi.2015.05.008. PubMed DOI
Wilk M.M., Borkner L., Misiak A., Curham L., Allen A.C., Mills K.H.G. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes Infect. 2019;8:169–185. doi: 10.1080/22221751.2018.1564630. PubMed DOI PMC
Wilk M.M., Misiak A., McManus R.M., Allen A.C., Lynch M.A., Mills K.H.G. Lung CD4 Tissue-Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice with Bordetella pertussis. J. Immunol. 2017;199:233–243. doi: 10.4049/jimmunol.1602051. PubMed DOI
Bancroft T., Dillon M.B., da Silva Antunes R., Paul S., Peters B., Crotty S., Lindestam Arlehamn C.S., Sette A. Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood. Cell. Immunol. 2016;304–305:35–43. doi: 10.1016/j.cellimm.2016.05.002. PubMed DOI PMC
da Silva Antunes R., Babor M., Carpenter C., Khalil N., Cortese M., Mentzer A.J., Seumois G., Petro C.D., Purcell L.A., Vijayanand P., et al. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J. Clin. Investig. 2018;128:3853–3865. doi: 10.1172/JCI121309. PubMed DOI PMC
BMJ VACCINATION against whooping-cough; relation between protection in children and results of laboratory tests; a report to the Whooping-cough Immunization Committee of the Medical Research Council and to the medical officers of health for Cardiff, Leeds, Leyton, Manchester, Middlesex, Oxford, Poole, Tottenham, Walthamstow, and Wembley. BMJ. 1956;2:454–462. PubMed PMC
Paddock C.D., Sanden G.N., Cherry J.D., Gal A.A., Langston C., Tatti K.M., Wu K.H., Goldsmith C.S., Greer P.W., Montague J.L., et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin. Infect. Dis. 2008;47:328–338. doi: 10.1086/589753. PubMed DOI
Betsou F., Sebo P., Guiso N. CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 1993;61:3583–3589. doi: 10.1128/IAI.61.9.3583-3589.1993. PubMed DOI PMC
Betsou F., Sebo P., Guiso N. The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Infect. Immun. 1995;63:3309–3315. doi: 10.1128/IAI.63.9.3309-3315.1995. PubMed DOI PMC
Villarino Romero R., Bibova I., Cerny O., Vecerek B., Wald T., Benada O., Zavadilova J., Osicka R., Sebo P. The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect. Immun. 2013;81:2761–2767. doi: 10.1128/IAI.00353-13. PubMed DOI PMC
Cheung G.Y., Xing D., Prior S., Corbel M.J., Parton R., Coote J.G. Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model. Infect. Immun. 2006;74:6797–6805. doi: 10.1128/IAI.01104-06. PubMed DOI PMC
Boehm D.T., Hall J.M., Wong T.Y., DiVenere A.M., Sen-Kilic E., Bevere J.R., Bradford S.D., Blackwood C.B., Elkins C.M., DeRoos K.A., et al. Evaluation of Adenylate Cyclase Toxoid Antigen in Acellular Pertussis Vaccines by Using a Bordetella pertussis Challenge Model in Mice. Infect. Immun. 2018;86 doi: 10.1128/IAI.00857-17. PubMed DOI PMC
Ahmad J.N., Holubova J., Benada O., Kofronova O., Stehlik L., Vasakova M., Sebo P. Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio. 2019;10:e01743-19. doi: 10.1128/mBio.01743-19. PubMed DOI PMC
Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI
Sebo P., Osicka R., Masin J. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Rev. Vaccines. 2014;13:1215–1227. doi: 10.1586/14760584.2014.944900. PubMed DOI
Stainer D.W., Scholte M.J. A simple chemically defined medium for the production of phase I Bordetella pertussis. J. Gen. Microbiol. 1970;63:211–220. doi: 10.1099/00221287-63-2-211. PubMed DOI
Bindels D.S., Haarbosch L., van Weeren L., Postma M., Wiese K.E., Mastop M., Aumonier S., Gotthard G., Royant A., Hink M.A., et al. mScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat. Methods. 2017;14:53–56. doi: 10.1038/nmeth.4074. PubMed DOI
Kovach M.E., Phillips R.W., Elzer P.H., Roop R.M., 2nd, Peterson K.M. pBBR1MCS: A broad-host-range cloning vector. Biotechniques. 1994;16:800–802. PubMed
Alexander F., Matheson M., Fry N.K., Labram B., Gorringe A.R. Antibody responses to individual Bordetella pertussis fimbrial antigen Fim2 or Fim3 following immunization with the five-component acellular pertussis vaccine or to pertussis disease. Clin. Vaccine Immunol. 2012;19:1776–1783. doi: 10.1128/CVI.00355-12. PubMed DOI PMC
Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid Purification of Endotoxin-Free RTX Toxins. Toxins. 2019;11:336. doi: 10.3390/toxins11060336. PubMed DOI PMC
Villarino Romero R., Hasan S., Fae K., Holubova J., Geurtsen J., Schwarzer M., Wiertsema S., Osicka R., Poolman J., Sebo P. Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. Int. J. Med. Microbiol. 2016;306:38–47. doi: 10.1016/j.ijmm.2015.11.003. PubMed DOI
van der Ark A., van Straaten-van de Kappelle I., Akkermans A., Hendriksen C., van de Donk H. Development of pertussis serological potency test. Serological assessment of antibody response induced by whole cell vaccine as an alternative to mouse protection in an intracerebral challenge model. Biologicals. 1994;22:233–242. doi: 10.1006/biol.1994.1034. PubMed DOI
Fabbrini M., Sammicheli C., Margarit I., Maione D., Grandi G., Giuliani M.M., Mori E., Nuti S. A new flow-cytometry-based opsonophagocytosis assay for the rapid measurement of functional antibody levels against Group B Streptococcus. J. Immunol. Methods. 2012;378:11–19. doi: 10.1016/j.jim.2012.01.011. PubMed DOI
Godfroid F., Denoel P., de Grave D., Schuerman L., Poolman J. Diphtheria-tetanus-pertussis (DTP) combination vaccines and evaluation of pertussis immune responses. Int. J. Med. Microbiol. 2004;294:269–276. doi: 10.1016/j.ijmm.2004.07.007. PubMed DOI
Guiso N., Capiau C., Carletti G., Poolman J., Hauser P. Intranasal murine model of Bordetella pertussis infection. I. Prediction of protection in human infants by acellular vaccines. Vaccine. 1999;17:2366–2376. doi: 10.1016/S0264-410X(99)00037-7. PubMed DOI
Mills K.H., Barnard A., Watkins J., Redhead K. Cell-mediated immunity to Bordetella pertussis: Role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect. Immun. 1993;61:399–410. doi: 10.1128/IAI.61.2.399-410.1993. PubMed DOI PMC
Queenan A.M., Dowling D.J., Cheng W.K., Fae K., Fernandez J., Flynn P.J., Joshi S., Brightman S.E., Ramirez J., Serroyen J., et al. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine. 2019;37:80–89. doi: 10.1016/j.vaccine.2018.11.028. PubMed DOI PMC
Zaghouani H., Hoeman C.M., Adkins B. Neonatal immunity: Faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol. 2009;30:585–591. doi: 10.1016/j.it.2009.09.002. PubMed DOI PMC
Conover M.S., Sloan G.P., Love C.F., Sukumar N., Deora R. The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol. Microbiol. 2010;77:1439–1455. doi: 10.1111/j.1365-2958.2010.07297.x. PubMed DOI PMC
Weyrich L.S., Feaga H.A., Park J., Muse S.J., Safi C.Y., Rolin O.Y., Young S.E., Harvill E.T. Resident microbiota affect Bordetella pertussis infectious dose and host specificity. J. Infect. Dis. 2014;209:913–921. doi: 10.1093/infdis/jit597. PubMed DOI PMC
Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI
Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI
Mobberley-Schuman P.S., Connelly B., Weiss A.A. Phagocytosis of Bordetella pertussis incubated with convalescent serum. J. Infect. Dis. 2003;187:1646–1653. doi: 10.1086/374741. PubMed DOI
Weingart C.L., Mobberley-Schuman P.S., Hewlett E.L., Gray M.C., Weiss A.A. Neutralizing antibodies to adenylate cyclase toxin promote phagocytosis of Bordetella pertussis by human neutrophils. Infect. Immun. 2000;68:7152–7155. doi: 10.1128/IAI.68.12.7152-7155.2000. PubMed DOI PMC
Ibsen P.H. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine. 1996;14:359–368. doi: 10.1016/0264-410X(95)00230-X. PubMed DOI
Auderset F., Ballester M., Mastelic-Gavillet B., Fontannaz P., Chabaud-Riou M., Reveneau N., Garinot M., Mistretta N., Liu Y., Lambert P.H., et al. Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circulating Antibodies: Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation. Front. Immunol. 2019;10:1520. doi: 10.3389/fimmu.2019.01520. PubMed DOI PMC
Ausar S.F., Zhu S., Duprez J., Cohen M., Bertrand T., Steier V., Wilson D.J., Li S., Sheung A., Brookes R.H., et al. Genetically detoxified pertussis toxin displays near identical structure to its wild-type and exhibits robust immunogenicity. Commun. Biol. 2020;3:427. doi: 10.1038/s42003-020-01153-3. PubMed DOI PMC
Blanchard Rohner G., Chatzis O., Chinwangso P., Rohr M., Grillet S., Salomon C., Lemaitre B., Boonrak P., Lawpoolsri S., Clutterbuck E., et al. Boosting Teenagers With Acellular Pertussis Vaccines Containing Recombinant or Chemically Inactivated Pertussis Toxin: A Randomized Clinical Trial. Clin. Infect. Dis. 2019;68:1213–1222. doi: 10.1093/cid/ciy594. PubMed DOI
Pitisuttithum P., Chokephaibulkit K., Sirivichayakul C., Sricharoenchai S., Dhitavat J., Pitisuthitham A., Phongsamart W., Boonnak K., Lapphra K., Sabmee Y., et al. Antibody persistence after vaccination of adolescents with monovalent and combined acellular pertussis vaccines containing genetically inactivated pertussis toxin: A phase 2/3 randomised, controlled, non-inferiority trial. Lancet Infect. Dis. 2018;18:1260–1268. doi: 10.1016/S1473-3099(18)30375-X. PubMed DOI
Sricharoenchai S., Sirivichayakul C., Chokephaibulkit K., Pitisuttithum P., Dhitavat J., Pitisuthitham A., Phongsamart W., Boonnak K., Lapphra K., Sabmee Y., et al. A genetically inactivated two-component acellular pertussis vaccine, alone or combined with tetanus and reduced-dose diphtheria vaccines, in adolescents: A phase 2/3, randomised controlled non-inferiority trial. Lancet Infect. Dis. 2018;18:58–67. doi: 10.1016/S1473-3099(17)30612-6. PubMed DOI
Modeling the catarrhal stage of Bordetella pertussis upper respiratory tract infections in mice