• This record comes from PubMed

Contribution of macromolecules to brain 1 H MR spectra: Experts' consensus recommendations

. 2021 May ; 34 (5) : e4393. [epub] 20201125

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P41 EB027061 NIBIB NIH HHS - United States
P30 NS076408 NINDS NIH HHS - United States
P41 EB015909 NIBIB NIH HHS - United States
P 30701 Austrian Science Fund FWF - Austria
R01 MH109159 NIMH NIH HHS - United States

Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.

Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas Texas Germany

Center for Advanced MR Development Department of Radiology Duke University Medical Center Durham North Carolina USA

Center for Biomedical Imaging Ecole Polytechnique Fédérale de Lausanne Lausanne Vaud Switzerland

Center for Magnetic Resonance Research Department of Radiology University of Minnesota Minneapolis Minnesota USA

Center for Stroke Research Berlin Charité Universitätsmedizin Berlin Berlin Germany

Centre for Human Brain Health and School of Psychology University of Birmingham Birmingham UK

Christian Doppler Laboratory for Clinical Molecular MR Imaging Vienna Austria

Cleveland Clinic Foundation Imaging Institute Cleveland Ohio USA

Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic

Department of Radiology and Biomedical Imaging Yale University New Haven Connecticut USA

Department of Radiology Hoglund Brain Imaging Center University of Kansas Medical Center Kansas City Kansas USA

Departments of Biomedical Engineering and Radiology Columbia University New York USA

Departments of Radiology and Biomedical Research University of Bern Bern Switzerland

Division of Informatics Imaging and Data Science School of Health Sciences Faculty of Biology Medicine and Health University of Manchester Manchester UK

Faculty of Science Eberhard Karls Universität Tübingen Tübingen Germany

High Field Magnetic Resonance Max Planck Institute for Biological Cybernetics Tübingen Germany

High Field MR Centre Department of Biomedical Imaging and Image Guided Therapy Medical University of Vienna Vienna Austria

IMPRS for Cognitive and Systems Neuroscience Eberhard Karls Universität Tübingen Tübingen Germany

Laboratory for Functional and Metabolic Imaging Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland

Magnetic Resonance Research Center and Department of Psychiatry Yale University New Haven Connecticut USA

Russell H Morgan Department of Radiology and Radiological Science The Johns Hopkins University School of Medicine Baltimore Maryland USA

University Institute of Diagnostic and Interventional Neuroradiology University Hospital Bern and Inselspital Bern Switzerland

See more in PubMed

Kunz N, Cudalbu C, Mlynarik V, Hüppi PS, Sizonenko SV., Gruetter R. Diffusion-weighted spectroscopy: A novel approach to determine macromolecule resonances in short-echo time 1H-MRS. Magn Reson Med. 2010;64(4):939–946. PubMed

Graaf RA de Brown PB, Mcintyre S Nixon TW, Behar KL Rothman DL. High Magnetic Field Water and Metabolite Proton T 1 and T 2 Relaxation in Rat Brain In Vivo. Magn Reson Med. 2006;56(2):386–94. PubMed

Behar KL, Ogino T. Assignment of resonances in the 1H spectrum of rat brain by two-dimensional shift correlated and J-resolved NMR spectroscopy. Magn Reson Med. 1991;17(2):285–303. PubMed

Behar KL, Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med. 1993;30(1):38–44. PubMed

Arus C, Yen-Chung C, Barany M. Proton magnetic resonance spectra of excised rat brain. Assignments of resonances. Physiol Chem Phys Med NMR. 1985;17(1):23–33. PubMed

Kauppinen RA, Kokko H, Williams SR. Detection of Mobile Proteins by Proton Nuclear Magnetic Resonance Spectroscopy in the Guinea Pig Brain Ex Vivo and Their Partial Purification. J Neurochem. 1992;58(3):967–74. PubMed

Kauppinen RA, Niskanen T, Hakumäki J, Williams SR. Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo and in vitro. NMR Biomed. 1993;6(4):242–7. PubMed

Behar KL, Rothman DL, Spencer DD, Petroff OAC. Analysis of macromolecule resonances in1H NMR spectra of human brain. Magn Reson Med. 1994;32(3):294–302. PubMed

Mori S, van Zijl PCM, Johnson MON, Berg JM. Water Exchange Filter (WEX Filter) for Nuclear Magnetic Resonance Studies of Macromolecules. J Am Chem Soc. 1994;116(26):11982–11984.

van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011;65(4):927–48. PubMed PMC

Heo HY, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging. 2016;44(1):41–50. PubMed PMC

Candiota AP, Majós C, Bassols A, et al. Assignment of the 2.03 ppm resonance in in vivo 1H MRS of human brain tumour cystic fluid: contribution of macromolecules. Magn Reson Mater Physics, Biol Med. 2004;17(1):36–46. PubMed

Mountford C, Quadrelli S, Lin A, Ramadan S. Six fucose-α(1–2) sugars and α-fucose assigned in the human brain using in vivo two-dimensional MRS. NMR Biomed. 2015;28(3):291–6. PubMed

Soares AF, Gruetter R, Lei H. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism. Anal Biochem. 2017;529:117–126. PubMed

Kauppinen RA, Nissinen T, Kärkkäinen AM, et al. Detection of thymosin β4 in situ in a guinea pig cerebral cortex preparation using 1H NMR spectroscopy. J Biol Chem. 1992;15(267(14)):9905–10. PubMed

Woody RW, Roberts GCK, Clark DC, Bayley PM. 1 H NMR evidence for flexibility in microtubule-associated proteins and microtubule protein oligomers. FEBS Lett. 1982;141(2):181–184. PubMed

Woody RW, Clark DC, Roberts GCK, Martin SR, Bayley PM. Molecular Flexibility in Microtubule Proteins: Proton Nuclear Magnetic Resonance Characterization. Biochemistry. 1983;22(9):2186–2192. PubMed

Wüthrich K The way to NMR structures of proteins. Nat Struct Biol. 2001;8:923–925. PubMed

Wüthrich K Protein structure determination in solution by NMR spectroscopy. J Biol Chem. 1990;265(36):22059–62. PubMed

Marassi FM, Opella SJ. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998;8(5):640–648. PubMed PMC

Craveiro M, Clément-Schatlo V, Marino D, Gruetter R, Cudalbu C. In vivo brain macromolecule signals in healthy and glioblastoma mouse models: 1H magnetic resonance spectroscopy, post-processing and metabolite quantification at 14.1 T. J Neurochem. 2014;129(5):806–815. PubMed

Behar KL. Dealing with macromolecules. In: ISMRM, Morning Categorical Course “Spectroscopy: The Brain and Beyond”.; 2004.

Mielke SP, Krishnan VV. Characterization of protein secondary structure from NMR chemical shifts. Prog Nucl Magn Reson Spectrosc. 2009;54(3–4):141–165. PubMed PMC

De Dios AC, Pearson JG, Oldfield E. Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach. Science (80-). 1993;260(5113):1491–6. PubMed

Borbath T, Murali-Manohar S, Wright AM, Henning A. T2 Relaxation Times of Macromolecules in Human Brain Spectra at 9.4 T. 27th Annu Meet Exhib Int Soc Magn Reson Med (ISMRM 2019), Montréal, QC, Canada. 2019.

Borbáth T, Murali-Manohar S, Henning A. Towards a Fitting Model of Macromolecular Spectra: Amino Acids. In: ISMRM.; 2019:1068.

Schaller B, Xin L, Gruetter R. Is the macromolecule signal tissue-specific in healthy human brain? a 1H MRS study at 7 tesla in the occipital lobe. Magn Reson Med. 2014;72(4):934–940. PubMed

Snoussi K, Gillen JS, Horska A, et al. Comparison of brain gray and white matter macromolecule resonances at 3 and 7 Tesla. Magn Reson Med. 2015;74(3):607–613. PubMed PMC

Lopez-Kolkovsky AL, Mériaux S, Boumezbeur F. Metabolite and Macromolecule T1 and T2 Relaxation Times in the Rat Brain in vivo at 17.2T. Magn Reson Med. 2016;75(2):503–514. PubMed

Beach EF, Munks B, Robinson A. The Amino Acid Composition of Animal Tissue Protein. J Biol Chem. 1943;148:431–439.

Robinson N, Williams CB. Amino acids in human brain. Clin Chim Acta. 1965;12:311–317.

Smith MH. The amino acid composition of proteins. J Theor Biol. 1966;13:261–282.

Clouet DH, Gaitonde MK. THE CHANGES WITH AGE IN THE PROTEIN COMPOSITION OF THE RAT BRAIN. J Neurochem. 1956;1(2):126–133. PubMed

Hofmann L, Slotboom J, Boesch C, Kreis R. Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med. 2001;46(5):855–863. PubMed

Kreis R, Boer V, Choi I-Y, et al. Terminology for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts’ consensus recommendations. NMR Biomed. 2019;submitted. PubMed PMC

Tkác I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med. 2001;46(3):451–6. PubMed

Juchem C, de Graaf RA. B0 magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Anal Biochem. 2017;529:17–29. PubMed PMC

Juchem C, Boer VO, Cudalbu C, et al. B0 Shimming for In Vivo MR Spectroscopy: Experts’ consensus recommendations. NMR Biomed. PubMed

Giapitzakis IA, Avdievich N, Henning A. Characterization of macromolecular baseline of human brain using metabolite cycled semi-LASER at 9.4T. Magn Reson Med. 2018;80(2):462–473. PubMed

Döring A, Adalid V, Boesch C, Kreis R. On the exploitation of slow macromolecular diffusion for baseline estimation in MR spectroscopy using 2D simultaneous fitting. In: Joint 26th Meeting of ISMRM and 35th Meeting of the ESMRMB, Paris (F).; 2018:1315.

Cudalbu C, Mlynárik V, Xin L, Gruetter R. Comparison of T1 Relaxation Times of the Neurochemical Profile in Rat Brain at 9.4 Tesla and 14.1 Tesla. Magn Reson Med. 2009;62(4):862–867. PubMed

Michaeli S, Garwood M, Zhu X, et al. Proton T 2 Relaxation Study of Water, N-acetylaspartate, and Creatine in Human Brain Using Hahn and Carr-Purcell Spin Echoes at 4T and 7T. 2002;633:629–633. PubMed

Wyss PO, Bianchini C, Scheidegger M, et al. In vivo estimation of transverse relaxation time constant (T2) of 17 human brain metabolites at 3T. Magn Reson Med. 2018;80(2):452–461. PubMed

Xin L, Gambarota G, Cudalbu C, Mlynárik V, Gruetter R. Single spin-echo T 2 relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain. Magn Reson Mater Physics, Biol Med. 2013;26(6):549–554. PubMed

Deelchand DK, Henry P-G, Ugurbil K, Marjanska M. Measurement of Transverse Relaxation Times of J-Coupled Metabolites in the Human Visual Cortex at 4 T. Magn Reson Med. 2012;67:891–897. PubMed PMC

Deelchand DK, Auerbach EJ, Kobayashi N, Marjanska M. Transverse Relaxation Time Constants of the Five Major Metabolites in Human Brain Measured In Vivo Using LASER and PRESS at 3 T. Magn Reson Med. 2018;79:1260–1265. PubMed PMC

Marjańska M, Auerbach EJ, Valabrègue R, Moortele P Van De, Adriany G, Garwood M. Localized 1 H NMR spectroscopy in different regions of human brain in vivo at 7T : T 2 relaxation times and concentrations of cerebral metabolites. NMR Biomed. 2012;25:332–339. PubMed PMC

Choi IY, Lee P. Doubly selective multiple quantum chemical shift imaging and T1relaxation time measurement of glutathione (GSH) in the human brain in vivo. NMR Biomed. 2013;26(1):28–34. PubMed PMC

Murali-Manohar S, Wright AM, Borbath T, Henning A. Longitudinal Relaxation times of Macromolecular Resonances at 9.4 T in Human Brain. 27th Annu Meet Exhib Int Soc Magn Reson Med (ISMRM 2019), Montréal, QC, Canada. 2019.

Murali-Manohar S, Borbath T, Wright AM, Soher B, Mekle R, Henning A. T2 relaxation times of macromolecules and metabolites in the human brain at 9.4 T. Magn Reson Med. 2020:Epub ahead of print. PubMed

Považan M, Strasser B, Hangel G, et al. Simultaneous mapping of metabolites and individual macromolecular components via ultra-short acquisition delay 1 H MRSI in the brain at 7T. Magn Reson Med. 2017;79(3):1231–1240. PubMed PMC

Ligneul C, Palombo M, Valette J. Metabolite diffusion up to very high b in the mouse brain in vivo: Revisiting the potential correlation between relaxation and diffusion properties. Magn Reson Med. 2017;77(4):1390–1398. PubMed PMC

Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev. 1948;73(7):679–712.

Pfeuffer J, Tkáč I, Gruetter R. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab. 2000;20(4):736–746. PubMed

Ligneul C, Palombo M, Hernández-Garzón E, et al. Diffusion-weighted magnetic resonance spectroscopy enables cell-specific monitoring of astrocyte reactivity in vivo. Neuroimage. 2019;191:457–469. PubMed

Cudalbu C, Mlynarik V, Gruetter R. Handling macromolecule signals in the quantification of the neurochemical profile. J Alzheimers Dis. 2012;31 Suppl 3:S101–15. PubMed

Cudalbu C, Mlynrik V, Xin L, Gruetter R. Quantification of in vivo short echo-time proton magnetic resonance spectra at 14.1 T using two different approaches of modelling the macromolecule spectrum. Meas Sci Technol. 2009;20:104034 (7pp).

Mlynárik V, Cudalbu C, Xin L, Gruetter R. 1H NMR spectroscopy of rat brain in vivo at 14.1 Tesla: Improvements in quantification of the neurochemical profile. J Magn Reson. 2008;194(2):163–168. PubMed

Marjanska M, Deelchand DK, Hodges JS, et al. Altered macromolecular pattern and content in the aging human brain. NMR Biomed. 2018;(31:e3865):1–8. PubMed PMC

Vanhamme L, Van Huffel S. AMARES: Advanced Method for Accurate, Robust and Efficient Spectral fitting of MRS data with use of prior knowledge. 1997;43(129):1–2. PubMed

Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13:129–153. PubMed

Chong DGQ, Kreis R, Bolliger CS, Boesch C, Slotboom J. Two-dimensional linear-combination model fitting of magnetic resonance spectra to define the macromolecule baseline using FiTAID, a Fitting Tool for Arrays of Interrelated Datasets. Magn Reson Mater Physics, Biol Med. 2011;24(3):147–164. PubMed

Kreis R, Slotboom J, Hofmann L, Boesch C. Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med. 2005;54:761–8. PubMed

Marjańska M, Deelchand DK, Hodges JS, et al. Altered macromolecular pattern and content in the aging human brain. NMR Biomed. 2018;31(2):1–8. PubMed PMC

Bhogal AA, Schür RR, Houtepen LC, et al. 1H–MRS processing parameters affect metabolite quantification: The urgent need for uniform and transparent standardization. NMR Biomed. 2017;30(11):1–9. PubMed

Lee HH, Kim H. Parameterization of spectral baseline directly from short echo time full spectra in 1H-MRS. Magn Reson Med. 2017;78(3):836–847. PubMed

Seeger U, Klose U, Mader I, Grodd W, Na T. Parameterized Evaluation of Macromolecules and Lipids in Proton MR Spectroscopy of Brain Diseases. 2003;28:19–28. PubMed

Považan M, Hangel G, Strasser B, et al. Mapping of brain macromolecules and their use for spectral processing of 1H-MRSI data with an ultra-short acquisition delay at 7T. Neuroimage. 2015;121:126–135. PubMed

Pfeuffer J, Juchem C, Merkle H, Nauerth A, Logothetis NK. High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey. Magn Reson Imaging. 2004;22(10):1361–1372. PubMed

Otazo R, Mueller B, Ugurbil K, Wald L, Posse S. Signal-to-Noise Ratio and Spectral Linewidth Improvements Between 1.5 and 7 Tesla in Proton Echo-Planar Spectroscopic Imaging. 2006;56:1200–1210. PubMed

Birch R, Peet AC, Dehghani H, Wilson M. Influence of Macromolecule Baseline on 1 H MR Spectroscopic Imaging Reproducibility. Magn Reson Med. 2017;77:34–43. PubMed PMC

Hong S-T, Balla DZ, Shajan G, Choi C, Uğurbil K, Pohmann R. Enhanced Neurochemical Profile of the Rat Brain using In Vivo 1H NMR spectroscopy at 16.4T. Magn Reson Med. 2011;65(1):28–34. PubMed

Hoefemann M, Bolliger C, van derVeen JW, Kreis R. About the need for a comprehensive description of the macromolecular baseline signal for MR fingerprinting and multidimensional fitting of MR spectra. In: ISMRM.; 2019:1069.

Wright AM, Murali-Manohar S, Henning A. Relaxation corrected and Sequence-dependent Macromolecule Baseline Model. In: ISMRM.; 2019:2247.

Kassem MNE, Bartha R. Quantitative proton short-echo-time LASER spectroscopy of normal human white matter and hippocampus at 4 Tesla incorporating macromolecule subtraction. Magn Reson Med. 2003;49(5):918–27. PubMed

Penner J, Bartha R. Semi-LASER 1H MR spectroscopy at 7 Tesla in human brain: Metabolite quantification incorporating subject-specific macromolecule removal. Magn Reson Med. 2015;74(1):4–12. PubMed

Bartha R, Drost DJ, Williamson PC. Factors affecting the quantification of short echo in-vivo1H MR spectra: Prior knowledge, peak elimination, and filtering. NMR Biomed. 1999;12(4):205–216. PubMed

Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Towards an In Vivo Neurochemical Profile : Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain. J Magn Reson. 1999;141:104–120. PubMed

Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R. Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting. Magn Reson Med. 2002;48(3):440–453. PubMed

Giapitzakis IA, Borbath T, Murali-Manohar S, Avdievich N, Henning A. Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T. Magn Reson Med. 2018;(June 2018):746–758. PubMed

Schaller B, Xin L, Cudalbu C, Gruetter R. Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T. NMR Biomed. 2013;26(5):593–599. PubMed

Gottschalk M, Lamalle L, Segebarth C. Short-TE localised 1 H MRS of the human brain at 3 T : quantification of the metabolite signals using two approaches to account for macromolecular signal contributions. 2008;(21):507–517. PubMed

Henning A Advanced spectral quantification: Parameter handling, nonparametric pattern modeling, and multidimensional fitting. eMagRes. 2016:981–994.

Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–679. PubMed

Coenradie Y, Beer R De, Ormondt D Van, Lyon B. Background-signal Parameterization in In Vivo MR Spectroscopy. Time.:6–8.

Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 2005;18(1):1–13. PubMed

Cudalbu C, Beuf O, Cavassila S. In vivo short echo time localized 1H MRS of the rat brain at 7 T: Influence of two strategies of background-accommodation on the metabolite concentration estimation using QUEST. J Signal Process Syst. 2009;55(1–3).

Cudalbu C, Mlynárik V, Xin L, Gruetter R. Comparison of two approaches to model the macromolecule spectrum for the quantification of short TE 1H MRS spectra. In: IST 2008 - IEEE Workshop on Imaging Systems and Techniques Proceedings.; 2008.

Choi I-Y, Andronesi O, Barker P, et al. Spectral editing in 1H magnetic resonance spectroscopy: Experts’ consensus recommendations. NMR Biomed. PubMed PMC

Rothman DL, Petroff OA, Behar KL, Mattson RH. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci. 1993;90(12):5662–5666. PubMed PMC

Terpstra M, Ugurbil K, Gruetter R. Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med. 2002;47(5):1009–1012. PubMed

Choi IY, Lee SP, Merkle H, Shen J. Single-shot two-echo technique for simultaneous measurement of GABA and creatine in the human brain in vivo. Magn Reson Med. 2004;51(6):1115–21. PubMed

Donahue MJ, Near J, Blicher JU, Jezzard P. Baseline GABA concentration and fMRI response. Neuroimage. 2010;53:392–8. PubMed

Aguila MER, Lagopoulos J, Leaver AM, et al. Elevated levels of GABA+ in migraine detected using 1H-MRS. NMR Biomed. 2015;28:890–7. PubMed

O’Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E. In vivo detection of GABA and glutamate with MEGA-PRESS: Reproducibility and gender effects. J Magn Reson Imaging. 2011;33:1262–7. PubMed PMC

Choi IY, Lee SP, Shen J. In vivo single-shot three-dimensionally localized multiple quantum spectroscopy of GABA in the human brain with improved spectral selectivity. J Magn Reson. 2005;172(1):9–16. PubMed

Bhattacharyya PK. Macromolecule contamination in GABA editing using MEGA-PRESS should be properly accounted for. Neuroimage. 2014;84:1111–1112. PubMed

McLean MA, Barker GJ. Concentrations and magnetization transfer ratios of metabolites in gray and white matter. Magn Reson Med. 2006;56(6):1365–1370. PubMed

Pan JW, Mason GF, Pohost GM, Hetherington HP. Spectroscopic imaging of human brain glutamate by water-suppressed J-refocused coherence transfer at 4.1 T. Magn Reson Med. 1996;36(1):7–12. PubMed

Moser P, Hingerl L, Strasser B, et al. Whole-slice mapping of GABA and GABA + at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout. Neuroimage. 2019;184(April 2018):475–489. PubMed PMC

Harris AD, Glaubitz B, Near J, et al. Impact of frequency drift on gamma-aminobutyric acid-edited MR spectroscopy. Magn Reson Med. 2014;72:941–8. PubMed PMC

Harris AD, Puts NAJ, Wijtenburg SA, et al. Normalizing data from GABA-edited MEGA-PRESS implementations at 3 Tesla. Magn Reson Imaging. 2017;42:8–15. PubMed PMC

Hetherington HP, Newcomer BR, Pan JW. Measurements of human cerebral GABA at 4.1 T using numerically optimized editing pulses. Magn Reson Med. 1998;39:6–10. PubMed

Henry PG, Dautry C, Hantraye P, Bloch G. Brain gaba editing without macromolecule contamination. Magn Reson Med. 2001;45:517–20. PubMed

Edden RAE, Puts NAJ, Barker PB. Macromolecule-suppressed GABA-edited magnetic resonance spectroscopy at 3T. Magn Reson Med. 2012;68:657–61. PubMed PMC

Henry PG, Van De Moortele PF, Giacomini E, Nauerth A, Bloch G. Field-frequency locked in vivo proton MRS on a whole-body spectrometer. Magn Reson Med. 1999;42:636–42. PubMed

Bogner W, Gagoski B, Hess AT, et al. 3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI. Neuroimage. 2014;103:290–302. PubMed PMC

Mikkelsen M, Barker PB, Bhattacharyya PK, et al. Big GABA : Edited MR spectroscopy at 24 research sites. Neuroimage. 2017;159:32–45. PubMed PMC

Mader I, Seeger U, Karitzky J, Erb M, Schick F, Klose U. Proton magnetic resonance spectroscopy with metabolite nulling reveals regional differences of macromolecules in normal human brain. J Magn Reson Imaging. 2002;16(5):538–46. PubMed

Lam F, Li Y, Clifford B, Liang ZP. Macromolecule mapping of the brain using ultrashort-TE acquisition and reference-based metabolite removal. Magn Reson Med. 2018;79(5):2460–2469. PubMed

Sibbitt WL, Haseler LJ, Griffey RR, Friedman SD, Brooks WM. Neurometabolism of active neuropsychiatric lupus determined with proton MR spectroscopy. Am J Neuroradiol. 1997;18(7):1271–1277. PubMed PMC

Saunders DE, Howe F a, van den Boogaart A, Griffiths JR, Brown MM. Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy. J Magn Reson Imaging. 1997;7(6):1116–21. PubMed

Graham GD, Hwang J-H, Rothman DL, Prichard JW. Spectroscopic Assessment of Alterations in Macromolecule and Small-Molecule Metabolites in Human Brain After Stroke. Stroke. 2001;32(12):2797–2802. PubMed

Mader I, Seeger U, Weissert R, et al. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain. 2001;124(5):953–961. PubMed

Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16(3):123–31. PubMed

Povazan M, Hnilicova P, Hangel G, et al. Detection of MM using metabolite-nulled MEGA-LASER at 3T – A possible effect on GABA+ signal. Proc Intl Soc Mag Reson Med. 2017;25.

Hnilicová P, Považan M, Strasser B, et al. Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3 T. NMR Biomed. 2016;29(11):1656–1665. PubMed PMC

Andronesi OC, Bhat H, Reuter M, Mukherjee S, Caravan P, Rosen BR. Whole brain mapping of water pools and molecular dynamics with rotating frame MR relaxation using gradient modulated low-power adiabatic pulses. Neuroimage. 2014;89:92–109. PubMed PMC

Geades N, Wismans C, Damen M, et al. Evidence for regional and spectral differences of macromolecule signals in human brain using a crusher coil at 7 Tesla. In: Proc. Intl. Soc. Mag. Reson. Med. 24 (2016).; 2016.

Xin L, Mlynarik V, Lei H, Gruetter R. Influence of regional macromolecule baseline on the quantification of neurochemical profile in rat brain. In: Proc. Intl. Soc. Mag. Reson. Med.; 2010:5.

Tkac I, Rao R, Georgieff MK, Gruetter R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med. 2003;50(1):24–32. PubMed

Schmitz JE, Kettunen MI, Hu DE, Brindle KM. 1H MRS-visible lipids accumulate during apoptosis of lymphoma cells in vitro and in vivo. Magn Reson Med. 2005;54:43–50. PubMed

Wolinsky JS, Narayana PA, Fenstermacher MJ. Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology. 1990;40(11):1764–9. PubMed

García-Gómez JM, Luts J, Julià-Sapé M, et al. Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magn Reson Mater Physics, Biol Med. 2009;22(1):5–18. PubMed PMC

Durmo F, Rydelius A, Cuellar Baena S, et al. Multivoxel 1H-MR Spectroscopy Biometrics for Preoprerative Differentiation Between Brain Tumors. Tomogr (Ann Arbor, Mich). 2018;4(4):172–181. PubMed PMC

Pedrosa de Barros N, Meier R, Pletscher M, et al. On the relation between MR spectroscopy features and the distance to MRI-visible solid tumor in GBM patients. Magn Reson Med. 2018;80(6):2339–2355. PubMed

Howe FA, Barton SJ, Cudlip SA, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2003;49(2):223–232. PubMed

Opstad KS, Griffiths JR, Bell BA, Howe FA. Apparent T 2 Relaxation Times of Lipid and Macromolecules : A Study of High-Grade Tumor Spectra. 2008;184:178–184. PubMed

Opstad KS, Wright AJ, Bell BA, Griffiths JR, Howe FA. Correlations between in vivo 1H MRS and ex vivo 1H HRMAS metabolite measurements in adult human gliomas. J Magn Reson Imaging. 2010;31(2):289–97. PubMed

Oz G, Alger JR, Barker PB, et al. The MRS Consensus Group. Clinical proton MR spectroscopy in central nervous system disorders. Radiology. 2014;270(3):658–79. PubMed PMC

Hwang JH, Graham GD, Behar KL, Alger JR, Prichard JW, Rothman DL. Short echo time proton magnetic resonance spectroscopic imaging of macromolecule and metabolite signal intensities in the human brain. Magn Reson Med. 1996;35(5):633–9. PubMed

Petroff OAC, Graham GD, Blamire AM, et al. Spectroscopic imaging of stroke in humans: Histopathology correlates of spectral changes. Neurology. 1992;42(7):1349–54. PubMed

Singh K, Trivedi R, Verma A, et al. Altered metabolites of the rat hippocampus after mild and moderate traumatic brain injury – a combined in vivo and in vitro 1H–MRS study. NMR Biomed. 2017;30:e3764. PubMed

Opstad KS, Bell BA, Griffiths JR, Howe FA. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1 H MRS and histological analysis. NMR Biomed. 2008;21(7):677–685. PubMed

Oz G, Tkac I, LR C, et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology. 2005;64(3):434–441. PubMed

Tkáč I, Öz G, Adriany G, Uǧurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T. Magn Reson Med. 2009;62(4):868–879. PubMed PMC

Bhattacharyya PK, Lowe KJ. Macromolecule-suppressed GABA acquisition at 7T with commonly available Gaussian editing pulses. In: ISMRM.; 2018:26:1285.

Choi IY, Lee SP, Merkle H, Shen J. In vivo detection of gray and white matter differences in GABA concentration in the human brain. Neuroimage. 2006;33(1):85–93. PubMed

Bhattacharyya PK, Phillips MD, Stone LA, Lowe MJ. In vivo magnetic resonance spectroscopy measurement of gray-matter and white-matter gamma-aminobutyric acid concentration in sensorimotor cortex using a motion-controlled MEGA point-resolved spectroscopy sequence. Magn Reson Imaging. 2011;29(3):374–9. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...