Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia

. 2020 Dec ; 62 () : 103075. [epub] 20201123

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33242826

Grantová podpora
R01 AR066124 NIAMS NIH HHS - United States
UM1 HG006493 NHGRI NIH HHS - United States

Odkazy

PubMed 33242826
PubMed Central PMC7695969
DOI 10.1016/j.ebiom.2020.103075
PII: S2352-3964(20)30451-5
Knihovny.cz E-zdroje

BACKGROUND: Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood METHODS: Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. FINDINGS: This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. INTERPRETATION: This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. FUNDING: Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.

Department of Biology Faculty of Medicine Masaryk University Brno 62500 Czech Republic; International Clinical Research Center St Anne's University Hospital Brno 65691 Czech Republic

Department of Molecular Cell and Developmental Biology University of California Los Angeles Los Angeles CA 90095 United States

Department of Orthopaedic Surgery University of California Los Angeles 615 Charles E Young Drive South BSRB 512 Los Angeles CA 90095 United States

Department of Orthopaedic Surgery University of California Los Angeles 615 Charles E Young Drive South BSRB 512 Los Angeles CA 90095 United States; Department of Molecular Cell and Developmental Biology University of California Los Angeles Los Angeles CA 90095 United States; Orthopaedic Institute for Children University of California Los Angeles Los Angeles CA 90095 United States

Department of Orthopaedic Surgery University of California Los Angeles 615 Charles E Young Drive South BSRB 512 Los Angeles CA 90095 United States; International Skeletal Dysplasia Registry University of California Los Angeles CA 90095 United States; Orthopaedic Institute for Children University of California Los Angeles Los Angeles CA 90095 United States; Department of Human Genetics University of California Los Angeles Los Angeles CA 90095 United States; Department of Obstetrics and Gynecology University of California Los Angeles Los Angeles CA 90095 United States

Department of Orthopaedic Surgery University of California Los Angeles 615 Charles E Young Drive South BSRB 512 Los Angeles CA 90095 United States; Laboratory of Bioengineering and Tissue Regeneration LABRET Department of Cell Biology Genetics and Physiology University of Málaga IBIMA Málaga 29071 Spain

Department of Orthopaedic Surgery University of California Los Angeles 615 Charles E Young Drive South BSRB 512 Los Angeles CA 90095 United States; Laboratory of Bioengineering and Tissue Regeneration LABRET Department of Cell Biology Genetics and Physiology University of Málaga IBIMA Málaga 29071 Spain; Networking Biomedical Research Center in Bioengineering Biomaterials and Nanomedicine Andalusian Centre for Nanomedicine and Biotechnology BIONAND Severo Ochoa 35 Málaga 29590 Spain

International Skeletal Dysplasia Registry University of California Los Angeles CA 90095 United States

University of Washington Center for Mendelian Genomics University of Washington Seattle WA 98195 United States

Zobrazit více v PubMed

Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–4200. PubMed PMC

Miner J.H. Developmental biology of glomerular basement membrane components. Curr Opin Nephrol Hypertens. 1998;7(1):13–19. PubMed

Miner J.H., Cunningham J., Sanes J.R. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol. 1998;143(6):1713–1723. PubMed PMC

Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci. 2017;74(6):1095–1115. PubMed PMC

Aumailley M., Bruckner-Tuderman L., Carter W.G., Deutzmann R., Edgar D., Ekblom P., et al. A simplified laminin nomenclature. Matrix Biol. 2005;24(5):326–332. PubMed

Clause K.C., Barker T.H. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24(5):830–833. PubMed PMC

Makrilia N., Kollias A., Manolopoulos L., Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009;27(10):1023–1037. PubMed

Cary L.A., Han D.C., Polte T.R., Hanks S.K., Guan J.L. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol. 1998;140(1):211–221. PubMed PMC

Calderwood D.A., Ginsberg M.H. Talin forges the links between integrins and actin. Nat Cell Biol. 2003;5(8):694–697. PubMed

Danen E.H., Yamada K.M. Fibronectin, integrins, and growth control. J Cell Physiol. 2001;189(1):1–13. PubMed

Dayel M.J., Mullins R.D. Activation of Arp2/3 complex: addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS Biol. 2004;2(4):E91. PubMed PMC

Weed S.A., Karginov A.V., Schafer D.A., Weaver A.M., Kinley A.W., Cooper J.A., et al. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol. 2000;151(1):29–40. PubMed PMC

Mortier G.R., Cohn D.H., Cormier-Daire V., Hall C., Krakow D., Mundlos S., et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179(12):2393–2419. PubMed

Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–1120. PubMed

Lim J., Grafe I., Alexander S., Lee B. Genetic causes and mechanisms of osteogenesis imperfecta. Bone. 2017;102:40–49. PubMed PMC

Merrill A.E., Sarukhanov A., Krejci P., Idoni B., Camacho N., Estrada K.D., et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–557. PubMed PMC

Huber C., Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160C(3):165–174. PubMed

Cormier-Daire V., Genevieve D., Munnich A., Le Merrer M. New insights in congenital bowing of the femora. Clin Genet. 2004;66(3):169–176. PubMed

Langen U.H., Pitulescu M.E., Kim J.M., Enriquez-Gasca R., Sivaraj K.K., Kusumbe A.P., et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol. 2017;19(3):189–201. PubMed PMC

Li S., Qi Y., McKee K., Liu J., Hsu J., Yurchenco P.D. Integrin and dystroglycan compensate each other to mediate laminin-dependent basement membrane assembly and epiblast polarization. Matrix Biol. 2017;57-58:272–284. PubMed PMC

Ayturk U.M., Jacobsen C.M., Christodoulou D.C., Gorham J., Seidman J.G., Seidman C.E., et al. An RNA-seq protocol to identify mRNA expression changes in mouse diaphyseal bone: applications in mice with bone property altering Lrp5 mutations. J Bone Miner Res. 2013;28(10):2081–2093. PubMed PMC

Tiwari S., Askari J.A., Humphries M.J., Bulleid N.J. Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking. J Cell Sci. 2011;124(Pt 10):1672–1680. PubMed PMC

Lopez-Ceballos P., Herrera-Reyes A.D., Coombs D., Tanentzapf G. In vivo regulation of integrin turnover by outside-in activation. J Cell Sci. 2016;129(15):2912–2924. PubMed

Toya S.P., Wary K.K., Mittal M., Li F., Toth P.T., Park C., et al. Integrin alpha6beta1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells. 2015;33(6):1719–1729. PubMed PMC

Owen K.A., Pixley F.J., Thomas K.S., Vicente-Manzanares M., Ray B.J., Horwitz A.F., et al. Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase. J Cell Biol. 2007;179(6):1275–1287. PubMed PMC

Loeser R.F. Integrins and cell signaling in chondrocytes. Biorheology. 2002;39(1–2):119–124. PubMed

Eleniste P.P., Patel V., Posritong S., Zero O., Largura H., Cheng Y.H., et al. Pyk2 and megakaryocytes regulate osteoblast differentiation and migration via distinct and overlapping mechanisms. J Cell Biochem. 2016;117(6):1396–1406. PubMed PMC

Li B., Balasubramanian K., Krakow D., Cohn D.H. Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network. BMC Genomics. 2017;18(1):983. PubMed PMC

Roca-Cusachs P., del Rio A., Puklin-Faucher E., Gauthier N.C., Biais N., Sheetz M.P. Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A. 2013;110(15):E1361–E1370. PubMed PMC

Laine C.M., Joeng K.S., Campeau P.M., Kiviranta R., Tarkkonen K., Grover M., et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013;368(19):1809–1816. PubMed PMC

Villarroel A., Del Valle-Perez B., Fuertes G., Curto J., Ontiveros N., Garcia de Herreros A., et al. SRC and FYN define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cell Mol Life Sci. 2020;77(5):919–935. PubMed PMC

Yokoyama N., Malbon C.C. Dishevelled-2 docks and activates SRC in a WNT-dependent manner. J Cell Sci. 2009;122(Pt 24):4439–4451. PubMed PMC

Li K., Zhang Y., Zhang Y., Jiang W., Shen J., Xu S., et al. Tyrosine kinase Fyn promotes osteoarthritis by activating the beta-catenin pathway. Ann Rheum Dis. 2018;77(6):935–943. PubMed

Sampaolo S., Napolitano F., Tirozzi A., Reccia M.G., Lombardi L., Farina O., et al. Identification of the first dominant mutation of LAMA5 gene causing a complex multisystem syndrome due to dysfunction of the extracellular matrix. J Med Genet. 2017;54(10):710–720. PubMed

Maselli R.A., Arredondo J., Vazquez J., Chong J.X., University of Washington Center for Mendelian G. Bamshad M.J., et al. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173(8):2240–2245. PubMed PMC

Bolcato-Bellemin A.L., Lefebvre O., Arnold C., Sorokin L., Miner J.H., Kedinger M., et al. Laminin alpha5 chain is required for intestinal smooth muscle development. Dev Biol. 2003;260(2):376–390. PubMed

Rooney J.E., Gurpur P.B., Burkin D.J. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2009;106(19):7991–7996. PubMed PMC

Sharir A., Stern T., Rot C., Shahar R., Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138(15):3247–3259. PubMed

Zhao Y., Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci. 2020 PubMed

Petit V., Thiery J.P. Focal adhesions: structure and dynamics. Biol Cell. 2000;92(7):477–494. PubMed

Sieg D.J., Hauck C.R., Ilic D., Klingbeil C.K., Schaefer E., Damsky C.H., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2(5):249–256. PubMed

Zhao J., Zheng C., Guan J. Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci. 2000;113(Pt 17):3063–3072. PubMed

Li X., Ye J.X., Xu M.H., Zhao M.D., Yuan F.L. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int. 2017;28(7):2221–2231. PubMed

Bonnette P.C., Robinson B.S., Silva J.C., Stokes M.P., Brosius A.D., Baumann A., et al. Phosphoproteomic characterization of PYK2 signaling pathways involved in osteogenesis. J Proteomics. 2010;73(7):1306–1320. PubMed

Posritong S., Hong J.M., Eleniste P.P., McIntyre P.W., Wu J.L., Himes E.R., et al. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Mol Cell Endocrinol. 2018;474:35–47. PubMed PMC

Buckbinder L., Crawford D.T., Qi H., Ke H.Z., Olson L.M., Long K.R., et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci U S A. 2007;104(25):10619–10624. PubMed PMC

Xiong W.C., Feng X. PYK2 and FAK in osteoclasts. Front Biosci. 2003;8:d1219–d1226. PubMed

Gil-Henn H., Destaing O., Sims N.A., Aoki K., Alles N., Neff L., et al. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. J Cell Biol. 2007;178(6):1053–1064. PubMed PMC

Lakkakorpi P.T., Bett A.J., Lipfert L., Rodan G.A., Duong L.T. PYK2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem. 2003;278(13):11502–11512. PubMed

Jin W.J., Kim B., Kim J.W., Kim H.H., Ha H., Lee Z.H. Notch2 signaling promotes osteoclast resorption via activation of PYK2. Cell Signal. 2016;28(5):357–365. PubMed

Arcucci A., Montagnani S., Gionti E. Expression and intracellular localization of Pyk2 in normal and v-src transformed chicken epiphyseal chondrocytes. Biochimie. 2006;88(1):77–84. PubMed

Liang W., Li Z., Wang Z., Zhou J., Song H., Xu S., et al. Periodic mechanical stress induces chondrocyte proliferation and matrix synthesis via CaMKII-mediated Pyk2 signaling. Cell Physiol Biochem. 2017;42(1):383–396. PubMed

Loeser R.F., Forsyth C.B., Samarel A.M., Im H.J. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem. 2003;278(27):24577–24585. PubMed PMC

Lee Y.C., Huang C.F., Murshed M., Chu K., Araujo J.C., Ye X., et al. Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts. Oncogene. 2010;29(22):3196–3207. PubMed PMC

Kaabeche K., Lemonnier J., Le Mee S., Caverzasio J., Marie P.J. Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J Biol Chem. 2004;279(35):36259–36267. PubMed

Kim H.J., Warren J.T., Kim S.Y., Chappel J.C., DeSelm C.J., Ross F.P., et al. Fyn promotes proliferation, differentiation, survival and function of osteoclast lineage cells. J Cell Biochem. 2010;111(5):1107–1113. PubMed PMC

Kim H.S., Kim D.K., Kim A.R., Mun S.H., Lee S.K., Kim J.H., et al. Fyn positively regulates the activation of DAP12 and FcRgamma-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell Signal. 2012;24(6):1306–1314. PubMed

van Oosterwijk J.G., van Ruler M.A., Briaire-de Bruijn I.H., Herpers B., Gelderblom H., van de Water B., et al. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer. 2013;109(5):1214–1222. PubMed PMC

Bellido T. Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem. 2010;111(1):1–6. PubMed PMC

Zhu X., Bao Y., Guo Y., Yang W. Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018;10(5) PubMed PMC

Despeaux M., Chicanne G., Rouer E., De Toni-Costes F., Bertrand J., Mansat-De Mas V., et al. Focal adhesion kinase splice variants maintain primitive acute myeloid leukemia cells through altered Wnt signaling. Stem Cells. 2012;30(8):1597–1610. PubMed

Ritie L., Spenle C., Lacroute J., Bolcato-Bellemin A.L., Lefebvre O., Bole-Feysot C., et al. Abnormal Wnt and PI3Kinase signaling in the malformed intestine of lama5 deficient mice. PLoS ONE. 2012;7(5):e37710. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...