Biallelic mutations in LAMA5 disrupts a skeletal noncanonical focal adhesion pathway and produces a distinct bent bone dysplasia
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AR066124
NIAMS NIH HHS - United States
UM1 HG006493
NHGRI NIH HHS - United States
PubMed
33242826
PubMed Central
PMC7695969
DOI
10.1016/j.ebiom.2020.103075
PII: S2352-3964(20)30451-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bent bone, LAMA5, Laminin α5, Skeletal dysplasia, β1 integrin,
- MeSH
- alely * MeSH
- buněčná adheze genetika MeSH
- chondrocyty metabolismus MeSH
- fenotyp MeSH
- fokální adhezní kinasa 2 genetika metabolismus MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- kosti a kostní tkáň abnormality diagnostické zobrazování MeSH
- laminin genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- mutační analýza DNA MeSH
- signální dráha Wnt MeSH
- signální transdukce * MeSH
- skupina kinas odvozených od src-genu metabolismus MeSH
- vývojové onemocnění kostí diagnóza etiologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fokální adhezní kinasa 2 MeSH
- laminin alpha5 MeSH Prohlížeč
- laminin MeSH
- skupina kinas odvozených od src-genu MeSH
BACKGROUND: Beyond its structural role in the skeleton, the extracellular matrix (ECM), particularly basement membrane proteins, facilitates communication with intracellular signaling pathways and cell to cell interactions to control differentiation, proliferation, migration and survival. Alterations in extracellular proteins cause a number of skeletal disorders, yet the consequences of an abnormal ECM on cellular communication remains less well understood METHODS: Clinical and radiographic examinations defined the phenotype in this unappreciated bent bone skeletal disorder. Exome analysis identified the genetic alteration, confirmed by Sanger sequencing. Quantitative PCR, western blot analyses, immunohistochemistry, luciferase assay for WNT signaling were employed to determine RNA, proteins levels and localization, and dissect out the underlying cell signaling abnormalities. Migration and wound healing assays examined cell migration properties. FINDINGS: This bent bone dysplasia resulted from biallelic mutations in LAMA5, the gene encoding the alpha-5 laminin basement membrane protein. This finding uncovered a mechanism of disease driven by ECM-cell interactions between alpha-5-containing laminins, and integrin-mediated focal adhesion signaling, particularly in cartilage. Loss of LAMA5 altered β1 integrin signaling through the non-canonical kinase PYK2 and the skeletal enriched SRC kinase, FYN. Loss of LAMA5 negatively impacted the actin cytoskeleton, vinculin localization, and WNT signaling. INTERPRETATION: This newly described mechanism revealed a LAMA5-β1 Integrin-PYK2-FYN focal adhesion complex that regulates skeletogenesis, impacted WNT signaling and, when dysregulated, produced a distinct skeletal disorder. FUNDING: Supported by NIH awards R01 AR066124, R01 DE019567, R01 HD070394, and U54HG006493, and Czech Republic grants INTER-ACTION LTAUSA19030, V18-08-00567 and GA19-20123S.
Zobrazit více v PubMed
Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195–4200. PubMed PMC
Miner J.H. Developmental biology of glomerular basement membrane components. Curr Opin Nephrol Hypertens. 1998;7(1):13–19. PubMed
Miner J.H., Cunningham J., Sanes J.R. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol. 1998;143(6):1713–1723. PubMed PMC
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci. 2017;74(6):1095–1115. PubMed PMC
Aumailley M., Bruckner-Tuderman L., Carter W.G., Deutzmann R., Edgar D., Ekblom P., et al. A simplified laminin nomenclature. Matrix Biol. 2005;24(5):326–332. PubMed
Clause K.C., Barker T.H. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24(5):830–833. PubMed PMC
Makrilia N., Kollias A., Manolopoulos L., Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009;27(10):1023–1037. PubMed
Cary L.A., Han D.C., Polte T.R., Hanks S.K., Guan J.L. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol. 1998;140(1):211–221. PubMed PMC
Calderwood D.A., Ginsberg M.H. Talin forges the links between integrins and actin. Nat Cell Biol. 2003;5(8):694–697. PubMed
Danen E.H., Yamada K.M. Fibronectin, integrins, and growth control. J Cell Physiol. 2001;189(1):1–13. PubMed
Dayel M.J., Mullins R.D. Activation of Arp2/3 complex: addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS Biol. 2004;2(4):E91. PubMed PMC
Weed S.A., Karginov A.V., Schafer D.A., Weaver A.M., Kinley A.W., Cooper J.A., et al. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol. 2000;151(1):29–40. PubMed PMC
Mortier G.R., Cohn D.H., Cormier-Daire V., Hall C., Krakow D., Mundlos S., et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179(12):2393–2419. PubMed
Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–1120. PubMed
Lim J., Grafe I., Alexander S., Lee B. Genetic causes and mechanisms of osteogenesis imperfecta. Bone. 2017;102:40–49. PubMed PMC
Merrill A.E., Sarukhanov A., Krejci P., Idoni B., Camacho N., Estrada K.D., et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–557. PubMed PMC
Huber C., Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 2012;160C(3):165–174. PubMed
Cormier-Daire V., Genevieve D., Munnich A., Le Merrer M. New insights in congenital bowing of the femora. Clin Genet. 2004;66(3):169–176. PubMed
Langen U.H., Pitulescu M.E., Kim J.M., Enriquez-Gasca R., Sivaraj K.K., Kusumbe A.P., et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol. 2017;19(3):189–201. PubMed PMC
Li S., Qi Y., McKee K., Liu J., Hsu J., Yurchenco P.D. Integrin and dystroglycan compensate each other to mediate laminin-dependent basement membrane assembly and epiblast polarization. Matrix Biol. 2017;57-58:272–284. PubMed PMC
Ayturk U.M., Jacobsen C.M., Christodoulou D.C., Gorham J., Seidman J.G., Seidman C.E., et al. An RNA-seq protocol to identify mRNA expression changes in mouse diaphyseal bone: applications in mice with bone property altering Lrp5 mutations. J Bone Miner Res. 2013;28(10):2081–2093. PubMed PMC
Tiwari S., Askari J.A., Humphries M.J., Bulleid N.J. Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking. J Cell Sci. 2011;124(Pt 10):1672–1680. PubMed PMC
Lopez-Ceballos P., Herrera-Reyes A.D., Coombs D., Tanentzapf G. In vivo regulation of integrin turnover by outside-in activation. J Cell Sci. 2016;129(15):2912–2924. PubMed
Toya S.P., Wary K.K., Mittal M., Li F., Toth P.T., Park C., et al. Integrin alpha6beta1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells. 2015;33(6):1719–1729. PubMed PMC
Owen K.A., Pixley F.J., Thomas K.S., Vicente-Manzanares M., Ray B.J., Horwitz A.F., et al. Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase. J Cell Biol. 2007;179(6):1275–1287. PubMed PMC
Loeser R.F. Integrins and cell signaling in chondrocytes. Biorheology. 2002;39(1–2):119–124. PubMed
Eleniste P.P., Patel V., Posritong S., Zero O., Largura H., Cheng Y.H., et al. Pyk2 and megakaryocytes regulate osteoblast differentiation and migration via distinct and overlapping mechanisms. J Cell Biochem. 2016;117(6):1396–1406. PubMed PMC
Li B., Balasubramanian K., Krakow D., Cohn D.H. Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network. BMC Genomics. 2017;18(1):983. PubMed PMC
Roca-Cusachs P., del Rio A., Puklin-Faucher E., Gauthier N.C., Biais N., Sheetz M.P. Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc Natl Acad Sci U S A. 2013;110(15):E1361–E1370. PubMed PMC
Laine C.M., Joeng K.S., Campeau P.M., Kiviranta R., Tarkkonen K., Grover M., et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013;368(19):1809–1816. PubMed PMC
Villarroel A., Del Valle-Perez B., Fuertes G., Curto J., Ontiveros N., Garcia de Herreros A., et al. SRC and FYN define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cell Mol Life Sci. 2020;77(5):919–935. PubMed PMC
Yokoyama N., Malbon C.C. Dishevelled-2 docks and activates SRC in a WNT-dependent manner. J Cell Sci. 2009;122(Pt 24):4439–4451. PubMed PMC
Li K., Zhang Y., Zhang Y., Jiang W., Shen J., Xu S., et al. Tyrosine kinase Fyn promotes osteoarthritis by activating the beta-catenin pathway. Ann Rheum Dis. 2018;77(6):935–943. PubMed
Sampaolo S., Napolitano F., Tirozzi A., Reccia M.G., Lombardi L., Farina O., et al. Identification of the first dominant mutation of LAMA5 gene causing a complex multisystem syndrome due to dysfunction of the extracellular matrix. J Med Genet. 2017;54(10):710–720. PubMed
Maselli R.A., Arredondo J., Vazquez J., Chong J.X., University of Washington Center for Mendelian G. Bamshad M.J., et al. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173(8):2240–2245. PubMed PMC
Bolcato-Bellemin A.L., Lefebvre O., Arnold C., Sorokin L., Miner J.H., Kedinger M., et al. Laminin alpha5 chain is required for intestinal smooth muscle development. Dev Biol. 2003;260(2):376–390. PubMed
Rooney J.E., Gurpur P.B., Burkin D.J. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2009;106(19):7991–7996. PubMed PMC
Sharir A., Stern T., Rot C., Shahar R., Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138(15):3247–3259. PubMed
Zhao Y., Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci. 2020 PubMed
Petit V., Thiery J.P. Focal adhesions: structure and dynamics. Biol Cell. 2000;92(7):477–494. PubMed
Sieg D.J., Hauck C.R., Ilic D., Klingbeil C.K., Schaefer E., Damsky C.H., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2(5):249–256. PubMed
Zhao J., Zheng C., Guan J. Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci. 2000;113(Pt 17):3063–3072. PubMed
Li X., Ye J.X., Xu M.H., Zhao M.D., Yuan F.L. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int. 2017;28(7):2221–2231. PubMed
Bonnette P.C., Robinson B.S., Silva J.C., Stokes M.P., Brosius A.D., Baumann A., et al. Phosphoproteomic characterization of PYK2 signaling pathways involved in osteogenesis. J Proteomics. 2010;73(7):1306–1320. PubMed
Posritong S., Hong J.M., Eleniste P.P., McIntyre P.W., Wu J.L., Himes E.R., et al. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Mol Cell Endocrinol. 2018;474:35–47. PubMed PMC
Buckbinder L., Crawford D.T., Qi H., Ke H.Z., Olson L.M., Long K.R., et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci U S A. 2007;104(25):10619–10624. PubMed PMC
Xiong W.C., Feng X. PYK2 and FAK in osteoclasts. Front Biosci. 2003;8:d1219–d1226. PubMed
Gil-Henn H., Destaing O., Sims N.A., Aoki K., Alles N., Neff L., et al. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. J Cell Biol. 2007;178(6):1053–1064. PubMed PMC
Lakkakorpi P.T., Bett A.J., Lipfert L., Rodan G.A., Duong L.T. PYK2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem. 2003;278(13):11502–11512. PubMed
Jin W.J., Kim B., Kim J.W., Kim H.H., Ha H., Lee Z.H. Notch2 signaling promotes osteoclast resorption via activation of PYK2. Cell Signal. 2016;28(5):357–365. PubMed
Arcucci A., Montagnani S., Gionti E. Expression and intracellular localization of Pyk2 in normal and v-src transformed chicken epiphyseal chondrocytes. Biochimie. 2006;88(1):77–84. PubMed
Liang W., Li Z., Wang Z., Zhou J., Song H., Xu S., et al. Periodic mechanical stress induces chondrocyte proliferation and matrix synthesis via CaMKII-mediated Pyk2 signaling. Cell Physiol Biochem. 2017;42(1):383–396. PubMed
Loeser R.F., Forsyth C.B., Samarel A.M., Im H.J. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem. 2003;278(27):24577–24585. PubMed PMC
Lee Y.C., Huang C.F., Murshed M., Chu K., Araujo J.C., Ye X., et al. Src family kinase/abl inhibitor dasatinib suppresses proliferation and enhances differentiation of osteoblasts. Oncogene. 2010;29(22):3196–3207. PubMed PMC
Kaabeche K., Lemonnier J., Le Mee S., Caverzasio J., Marie P.J. Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J Biol Chem. 2004;279(35):36259–36267. PubMed
Kim H.J., Warren J.T., Kim S.Y., Chappel J.C., DeSelm C.J., Ross F.P., et al. Fyn promotes proliferation, differentiation, survival and function of osteoclast lineage cells. J Cell Biochem. 2010;111(5):1107–1113. PubMed PMC
Kim H.S., Kim D.K., Kim A.R., Mun S.H., Lee S.K., Kim J.H., et al. Fyn positively regulates the activation of DAP12 and FcRgamma-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell Signal. 2012;24(6):1306–1314. PubMed
van Oosterwijk J.G., van Ruler M.A., Briaire-de Bruijn I.H., Herpers B., Gelderblom H., van de Water B., et al. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells. Br J Cancer. 2013;109(5):1214–1222. PubMed PMC
Bellido T. Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem. 2010;111(1):1–6. PubMed PMC
Zhu X., Bao Y., Guo Y., Yang W. Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018;10(5) PubMed PMC
Despeaux M., Chicanne G., Rouer E., De Toni-Costes F., Bertrand J., Mansat-De Mas V., et al. Focal adhesion kinase splice variants maintain primitive acute myeloid leukemia cells through altered Wnt signaling. Stem Cells. 2012;30(8):1597–1610. PubMed
Ritie L., Spenle C., Lacroute J., Bolcato-Bellemin A.L., Lefebvre O., Bole-Feysot C., et al. Abnormal Wnt and PI3Kinase signaling in the malformed intestine of lama5 deficient mice. PLoS ONE. 2012;7(5):e37710. PubMed PMC