• This record comes from PubMed

The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements

. 2020 Dec 02 ; 21 (1) : 291. [epub] 20201202

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33267872
PubMed Central PMC7709256
DOI 10.1186/s13059-020-02198-7
PII: 10.1186/s13059-020-02198-7
Knihovny.cz E-resources

BACKGROUND: Tetracentron sinense is an endemic and endangered deciduous tree. It belongs to the Trochodendrales, one of four early diverging lineages of eudicots known for having vesselless secondary wood. Sequencing and resequencing of the T. sinense genome will help us understand eudicot evolution, the genetic basis of tracheary element development, and the genetic diversity of this relict species. RESULTS: Here, we report a chromosome-scale assembly of the T. sinense genome. We assemble the 1.07 Gb genome sequence into 24 chromosomes and annotate 32,690 protein-coding genes. Phylogenomic analyses verify that the Trochodendrales and core eudicots are sister lineages and showed that two whole-genome duplications occurred in the Trochodendrales approximately 82 and 59 million years ago. Synteny analyses suggest that the γ event, resulting in paleohexaploidy, may have only happened in core eudicots. Interestingly, we find that vessel elements are present in T. sinense, which has two orthologs of AtVND7, the master regulator of vessel formation. T. sinense also has several key genes regulated by or regulating TsVND7.2 and their regulatory relationship resembles that in Arabidopsis thaliana. Resequencing and population genomics reveals high levels of genetic diversity of T. sinense and identifies four refugia in China. CONCLUSIONS: The T. sinense genome provides a unique reference for inferring the early evolution of eudicots and the mechanisms underlying vessel element formation. Population genomics analysis of T. sinense reveals its genetic diversity and geographic structure with implications for conservation.

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University Beijing 100083 China

Beijing Ori Gene Science and Technology Co Ltd Beijing 102206 China

BioDiscovery Institute and Department of Biological Sciences University of North Texas Denton TX 76203 USA

Biology Department Brookhaven National Laboratory Upton NY 11973 USA

Centre of the Region Haná for Biotechnological and Agricultural Research Faculty of Science Palacký University 78301 Olomouc Czech Republic

College of Biological Sciences and Biotechnology Beijing Forestry University Beijing 100083 China

College of Biological Sciences China Agricultural University Beijing 100193 China

College of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 China

College of Life Science Henan Normal University Xinxiang 453007 China

College of Life Sciences Peking University Beijing 100871 China

Department of Wood Anatomy and Utilization Research Institute of Wood Industry Chinese Academy of Forestry Beijing 100091 China

Institute of Botany Chinese Academy of Sciences Beijing 100093 China

Institute of Cellular and Molecular Botany University of Bonn Kirschallee 1 53115 Bonn Germany

School of Ecology and Nature conservation Beijing Forestry University Beijing 100083 China

State Key Laboratory of Protein and Plant Gene Research College of Life Sciences Peking University Beijing 100871 China

Wood Collections Chinese Academy of Forestry Beijing 100091 China

Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China

See more in PubMed

Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat Commun. 2014;5:4956. doi: 10.1038/ncomms5956. PubMed DOI PMC

Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009;161:105–121. doi: 10.1111/j.1095-8339.2009.00996.x. DOI

Byng JW, Chase MW, Christenhusz MJM, Fay MF, Judd WS, Mabberley DJ, et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20. doi: 10.1111/boj.12385. DOI

Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, Mckain MR, McNeal J, et al. A genome triplication associated with early diversification of the core eudicots. Genome Biol. 2012;13:R3. doi: 10.1186/gb-2012-13-1-r3. PubMed DOI PMC

Akoez G, Nordborg M. The Aquilegia genome reveals a hybrid origin of core eudicots. Genome Biol. 2019;20:256. doi: 10.1186/s13059-019-1888-8. PubMed DOI PMC

Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, et al. Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot. 2011;98:704–730. doi: 10.3732/ajb.1000404. PubMed DOI

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol. 2014;14:23. doi: 10.1186/1471-2148-14-23. PubMed DOI PMC

Endress PK. Floral structure, systematics, and phylogeny in Trochodendrales. Ann Mo Bot Gard. 1986;73:297–324. doi: 10.2307/2399115. DOI

Doweld AB. Carpology, seed anatomy and taxonomic relationships of Tetracentron (Tetracentraceae) and Trochodendron (Trochodendraceae) Ann Bot-London. 1998;82:413–443. doi: 10.1006/anbo.1998.0679. DOI

Chase MW, Soltis DE, Olmstead RG, Morgan D. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard. 1993;80:528–580. doi: 10.2307/2399846. DOI

Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, et al. Angiosperm phylogeny inferred from 18s ribosomal DNA sequences. Ann Mo Bot Gard. 1997;84:1–49. doi: 10.2307/2399952. DOI

Guo LR, Winzer T, Yang X, Li Y, Ning Z, He Z, et al. The opium poppy genome and morphinan production. Science. 2018;362:343–347. doi: 10.1126/science.aat4096. PubMed DOI

Ming R, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 2013;14:R41. PubMed PMC

Ohashi-Ito K, Iwamoto K, Fukuda H. LOB domain–containing protein 15 positively regulates expression of VND7, a master regulator of tracheary elements. Plant Cell Physiol. 2018;59:989–996. doi: 10.1093/pcp/pcy036. PubMed DOI

Wan T, Liu Z-M, Li L-F, Leitch AR, Leitch IJ, Lohaus R, et al. A genome for gnetophytes and early evolution of seed plants. Nat Plants. 2018;4(2):82–89. doi: 10.1038/s41477-017-0097-2. PubMed DOI

Bailey IW, Thompson WP. Additional notes upon the angiosperms Tetracentron, Trochodendron, and Drimys, in which vessels are absent from the wood. Ann Bot. 1918;32:503–512. doi: 10.1093/oxfordjournals.aob.a089688. DOI

Suzuki M, Joshi L, Fujii T, Noshiro S. The anatomy of unusual tracheids in Tetracentron wood. IAWA Bulletin. 1991;12:23–33. doi: 10.1163/22941932-90001200. DOI

Carlquist S. Pit membrane remnants in perforation plates of primitive dicotyledons and their significance. Am J Bot. 1992;79:660–670. doi: 10.1002/j.1537-2197.1992.tb14608.x. DOI

Ren Y, Chen L, Tian XH, Zhang XH, Lu AM. Discovery of vessels in Tetracentron (Trochodendraceae) and its systematic significance. Plant Syst Evol. 2007;267:155–161. doi: 10.1007/s00606-007-0563-9. DOI

Li H-F, Chaw S-M, Du C-M, Ren Y. Vessel elements present in the secondary xylem of Trochodendron and Tetracentron (Trochodendraceae) Flora. 2011;206(6):595–600. doi: 10.1016/j.flora.2010.11.018. DOI

Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 2011;66:579–590. doi: 10.1111/j.1365-313X.2011.04514.x. PubMed DOI

Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell. 2007;19:2776–2792. doi: 10.1105/tpc.107.053678. PubMed DOI PMC

McCarthy RL, Zhong R, Ye ZH. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol. 2009;50:1950–1964. doi: 10.1093/pcp/pcp139. PubMed DOI

Kim WC, Ko JH, Kim JY, Kim J, Bae HJ, Han KH. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J. 2013;73:26–36. doi: 10.1111/j.1365-313x.2012.05124.x. PubMed DOI

Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006;22:53–78. doi: 10.1146/annurev.cellbio.22.022206.160206. PubMed DOI

Funk V, Kositsup B, Zhao C, Beers EP. The Arabidopsis xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog. Plant Physiol. 2002;128:84–94. doi: 10.1104/pp.010514. PubMed DOI PMC

Soyano T, Thitamadee S, Machida Y, Chua NH. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell. 2008;20:3359–3373. doi: 10.1105/tpc.108.061796. PubMed DOI PMC

Endo H, Yamaguchi M, Tamura T, Nakano Y, Nishikubo N, Yoneda A, et al. Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation. Plant Cell Physiol. 2015;56:242–254. doi: 10.1093/pcp/pcu134. PubMed DOI

Ratter JA, Milne C. Chromosome numbers of some primitive angiosperms. Notes from the Royal Botanic Garden, Edinburgh. 1973;32:423–428.

Pigg KB, Wehr WC, Ickert-Bond SM. Trochodendron and nordenskioldia (Trochodendraceae) from the middle eocene of Washington State, USA. Int J Plant Sci. 2011;162:1187–1198. doi: 10.1086/321927. DOI

Sun Y, Moore MJ, Yue L, Feng T, Chu H, Chen S, et al. Chloroplast phylogeography of the East Asian Arcto-Tertiary relict Tetracentron sinense (Trochodendraceae) J Biogeogr. 2014;41:1721–1732. doi: 10.1111/jbi.12323. DOI

Li S, Gan X, Han H, Zhang X, Tian Z. Low within-population genetic diversity and high genetic differentiation among populations of the endangered plant Tetracentron sinense Oliver revealed by inter-simple sequence repeat analysis. Ann For Sci. 2018;75:74. doi: 10.1007/s13595-018-0752-4. DOI

Xu GC, Xu TJ, Zhu R, Zhang Y, Li SQ, Wang HW, et al. LR_Gapcloser: A tiling path–based gap closer that uses long reads to complete genome assembly. Gigascience. 2019;8: 10.1093/gigascience/giy157. PubMed PMC

Simao FR, Waterhouse M, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157. doi: 10.1186/s13059-015-0721-2. PubMed DOI PMC

Li HT, Yi TS, Gao ML, Ma PF, Zhang T, Yang JB, et al. Origin of angiosperms and the puzzle of the jurassic gap. Nat Plants. 2019;5:461–470. doi: 10.1038/s41477-019-0421-0. PubMed DOI

Yang ZH, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2006;23:212–226. doi: 10.1093/molbev/msj024. PubMed DOI

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006;22:1269–1271. doi: 10.1093/bioinformatics/btl097. PubMed DOI

Albert VA, Barbazuk WB, de Pamphilis CW, Der JP L-MJ, Ma H, et al. The amborella genome and the evolution of flowering plants. Science. 2013;342:1241089. doi: 10.1126/science.1241089. PubMed DOI

Zhang L, Chen F, Zhang X, Li Z, Zhao Y, Lohaus R, et al. The water lily genome and the early evolution of flowering plants. Nature. 2020;577:79–84. doi: 10.1038/s41586-019-1852-5. PubMed DOI PMC

Chaw S-M, Liu Y-C, Wu Y-W, Wang H-Y, Lin C-YI WC-S, et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat Plants. 2019;5:63–73. doi: 10.1038/s41477-018-0337-0. PubMed DOI PMC

Gui S, Peng J, Wang X, Wu Z, Cao R, Salse J, et al. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. Plant J. 2018;94:721–734. doi: 10.1111/tpj.13894. PubMed DOI

Shi T, Rahmani RS, Gugger PF, Wang M, Li H, Zhang Y, et al. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Mol Biol Evol. 2020;37:2394–2413. doi: 10.1093/molbev/msaa105. PubMed DOI PMC

Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goue N, et al. A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 2011;67:499–512. doi: 10.1111/j.1365-313X.2011.04614.x. PubMed DOI

Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J. 2009;58:525–537. doi: 10.1111/j.1365-313X.2009.03797.x. PubMed DOI PMC

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15:573–581. doi: 10.1016/j.tplants.2010.06.005. PubMed DOI

Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S, Stueber K, et al. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol. 2012;158:1583–1599. doi: 10.1104/pp.112.194001. PubMed DOI PMC

Zhong R, Ye Z-H. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci. 2014;229:193–207. doi: 10.1016/j.plantsci.2014.09.009. PubMed DOI

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC

Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967. doi: 10.1371/journal.pgen.1002967. PubMed DOI PMC

Strijk JS, Hinsinger DD, Zhang F, Cao K. Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research. Gigascience. 2019;8: 10.1093/gigascience/giz136. PubMed PMC

Pigg KB, Dillhoff RM, DeVore ML, Wehr WC. New diversity among the Trochodendraceae from the early/middle eocene Okanogan highlands of British Columbia, Canada, and northeastern Washington State, United States. Int J Plant Sci. 2007;168:521–532. doi: 10.1086/512104. DOI

Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol Plant. 2020;13:59–71. doi: 10.1016/j.molp.2019.10.012. PubMed DOI

Lyons E, Pedersen B, Kane J, Freeling M. The value of nonmodel genomes and an expample using synmap within CoGe to dissect the hexaploidy that predates the rosids. Tropical Plant Biol. 2008;1:181–190. doi: 10.1007/s12042-008-9017-y. DOI

Fawcett JA, Maere S, Van de Peer Y. Plants with double genomes might have had a better chance to survive the cretaceous-tertiary extinction event. Proc Natl Acad Sci. 2009;106:5737–5742. doi: 10.1073/pnas.0900906106. PubMed DOI PMC

Chanderbali AS, Yoo M-J, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, et al. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci 2010;107:22570–22575. PubMed PMC

Sharma B, Kramer EM. Aquilegia B gene homologs promote petaloidy of the sepals and maintenance of the C domain boundary. Evodevo. 2017;8:22. doi: 10.1186/s13227-017-0085-7. PubMed DOI PMC

Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Gen dev. 2000;14:2366–2376. doi: 10.1101/gad.813600. PubMed DOI PMC

Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han J-H, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development. 2008;135:1481–1491. doi: 10.1242/dev.020255. PubMed DOI

Gregis V, Sessa A, Colombo L, Kater MM. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J. 2008;56:891–902. doi: 10.1111/j.1365-313X.2008.03648.x. PubMed DOI

de Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, Weigel D, et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell. 2005;17:1424–1433. doi: 10.1105/tpc.105.031831. PubMed DOI PMC

Carlquist S, Schneider EL. The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. Am J Bot. 2002;89:185–195. doi: 10.3732/ajb.89.2.185. PubMed DOI

Ozaki K. Tetracentron leaves from the neogene of Japan. Trans Proc Palaeont Soc Japan N. S. 1987;146:77–87.

Suzuki M, Joshi L, Noshiro S. Tetracentron wood from the Miocene of Noto Peninsula, Central Japan, with a short revision of homoxylic fossil woods. Bot Mag Tokyo. 1991;104:37–48. doi: 10.1007/BF02493402. DOI

Manchester SR, Crane PR, Dilcher DL. Nordenskioldia and Trochodendron (Trochodendraceae) from the Miocene of Northwestern North America. Botanical Gaz. 1991;152:357–368. doi: 10.1086/337898. DOI

Grimsson F, Denk T, Zetter R. Pollen, fruits, and leaves of Tetracentron (Trochodendraceae) from the Cainozoic of Iceland and Western North America and their palaeobiogeographic implications. Grana. 2008;47:1–14. doi: 10.1080/00173130701873081. DOI

Tang CQ, Yang Y, Ohsawa M, Yi SR, Momohara A, Su WH, et al. Evidence for the persistence of wild Ginkgo biloba (ginkgoaceae) populations in the DALOU Moutains, southwestern China. Am J Bot. 2012;99:1408–1414. doi: 10.3732/ajb.1200168. PubMed DOI

Zhao YP, Fan G, Yin PP, Sun S, Li N, Hong X, Hu G, et al. Resequencing 545 Ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat Commun. 2019;10:4201. doi: 10.1038/s41467-019-12133-5. PubMed DOI PMC

Qi XS, Chen C, Comes HP, Sakaguchi S, Liu YH, Tanaka N, et al. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae) New Phytol. 2012;196:617–630. doi: 10.1111/j.1469-8137.2012.04242.x. PubMed DOI

Zheng B, Xu Q, Shen Y. The relationship between climate change and quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat Int. 2002;97:93–101. doi: 10.1016/S1040-6182(02)00054-X. DOI

Marcais G, Kingsford CA. Fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC

Liu B, Shi Y, Yuan Y, Hu X, Zhang H, Li N, et. al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv. 2012:arXiv:1308.2012v2.

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC

Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 2016;44:e147. doi: 10.1093/nar/gkw419. PubMed DOI PMC

Walker B, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–98. doi: 10.1016/j.cels.2016.07.002. PubMed DOI PMC

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. doi: 10.1126/science.aal3327. PubMed DOI PMC

Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016;3:99–101. doi: 10.1016/j.cels.2015.07.012. PubMed DOI PMC

Pryszcz LP, Gabaldon T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 2016;44:e113. doi: 10.1093/nar/gkw294. PubMed DOI PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013:arXiv:1303.3997v2.

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR assembly index (LAI) Nucleic Acids Res. 2018;46:e126. PubMed PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC

Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21:i351–i358. doi: 10.1093/bioinformatics/bti1018. PubMed DOI

Holt C, Yandell M. Maker2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. doi: 10.1186/1471-2105-12-491. PubMed DOI PMC

Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002;12:656–664. doi: 10.1101/gr.229202. PubMed DOI PMC

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.955. PubMed DOI PMC

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. Rnammer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018;46:D335–D342. doi: 10.1093/nar/gkx1038. PubMed DOI PMC

Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kumar S, Stecher G, Suleski M, Hedges SB. Timetree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI

Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14. doi: 10.1186/gb-2010-11-2-r14. PubMed DOI PMC

Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34:W609–W612. doi: 10.1093/nar/gkl315. PubMed DOI PMC

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinf. 2010;8:77–80. doi: 10.1016/S1672-0229(10)60008-3. PubMed DOI PMC

Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. doi: 10.1093/nar/gkr367. PubMed DOI PMC

Chen S, Zhou Y, Chen Y, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:884–890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P, et al. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–2034. doi: 10.1093/bioinformatics/btv098. PubMed DOI PMC

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 2012:arXiv:1207.3907v2.

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011. PubMed DOI PMC

Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci. 1979;76:5269–5273. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC

Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–276. doi: 10.1016/0040-5809(75)90020-9. PubMed DOI

Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:336. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC

Liu X, Fu YX. Exploring population size changes using SNP frequency spectra. Nat Genet. 2015;47:555–559. doi: 10.1038/ng.3254. PubMed DOI PMC

Liu P-L, Zhang X, Mao J-F, Hong Y-M, Zhang R-G, E YL, et al. Tetracentron sinense Genome sequencing, assembly, resequencing and RNA-sequencing. NCBI Sequence Read Archive, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA625382 (2020).

Lin JX; Zhang X; Liu P-L: Original images of Tetracentron sinense. Figshare. Figure. 2020: 10.6084/m9.figshare.13159991.v2.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...