The Effects of Daytime Psilocybin Administration on Sleep: Implications for Antidepressant Action

. 2020 ; 11 () : 602590. [epub] 20201203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33343372

Grantová podpora
K01 AG068353 NIA NIH HHS - United States

Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin's antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28-53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep.

Zobrazit více v PubMed

Andrillon T., Nir Y., Staba R. J., Ferrarelli F., Cirelli C., Tononi G., et al. (2011). Sleep spindles in humans: insights from intracranial EEG and unit recordings. J. Neurosci. 31, 17821–17834. 10.1523/jneurosci.2604-11.2011 PubMed DOI PMC

Astori S., Wimmer R. D., Luthi A. (2013). Manipulating sleep spindles–expanding views on sleep, memory, and disease. Trends Neurosci. 36, 738–748. 10.1016/j.tins.2013.10.001 PubMed DOI

Barbanoj M. J., Riba J., Clos S., Gimenez S., Grasa E., Romero S. (2008). Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers. Psychopharmacol. (Berl) 196, 315–326. 10.1007/s00213-007-0963-0 PubMed DOI

Barrett F.S., Doss M.K., Sepeda N.D., Pekar J.J., Griffiths R.R. (2020). Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci. Rep. 10, 2214 10.1038/s41598-020-59282-y PubMed DOI PMC

Baumeister D., Barnes G., Giaroli G., Tracy D. (2014). Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther. Adv. Psychopharmacol. 4, 156–169. 10.1177/2045125314527985 PubMed DOI PMC

Benca R. M., Okawa M., Uchiyama M., Ozaki S., Nakajima T., Shibui K., et al. (1997). Sleep and mood disorders. Sleep Med. Rev. 1, 45–56. 10.1016/s1087-0792(97)90005-8 PubMed DOI

Berry R. B., Gamaldo C. E., Harding S. M., Brooks R., Lloyd R. M., Vaughn B. V., et al. (2015). AASM scoring manual version 2.2 updates: new chapters for scoring infant sleep staging and home sleep apnea testing. J Clin Sleep Med 11, 1253–1254. 10.5664/jcsm.5176 PubMed DOI PMC

Bogenschutz M. P.,, Ross S. (2018). Therapeutic applications of classic hallucinogens. Curr Top Behav. Neurosci. 36, 361–391. 10.1007/7854_2016_464 PubMed DOI

Bravermanová A., Viktorinová M., Tylš F., Novák T., Androvičová R., Korčák J., et al. (2018). Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing-study on P300 and mismatch negativity in healthy volunteers. Psychopharmacol. (Berl) 235, 491–503. 10.1007/s00213-017-4807-2 PubMed DOI

Buzsáki G. (1998). Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res. 7 (Suppl. 1), 17–23. 10.1046/j.1365-2869.7.s1.3.x PubMed DOI

Carhart-Harris R. L., Bolstridge M., Rucker J., Day C. M. J., Erritzoe D., Kaelen M., et al. (2016). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 3, 619–627. 10.1016/s2215-0366(16)30065-7 PubMed DOI

Carhart-Harris R. L.,, Goodwin G. M. (2017). The therapeutic potential of psychedelic drugs: past, present, and future. Neuropsychopharmacol 42, 2105–2113. 10.1038/npp.2017.84 PubMed DOI PMC

Carhart-Harris R. L., Roseman L., Bolstridge M., Demetriou L., Pannekoek J. N., Wall M. B., et al. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7, 13187 10.1038/s41598-017-13282-7 PubMed DOI PMC

Carrier J., Land S., Buysse D. J., Kupfer D. J., Monk T. H. (2001). The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old). Psychophysiol. 38, 232–242. 10.1111/1469-8986.3820232 PubMed DOI

Catlow B. J., Song S., Paredes D. A., Kirstein C. L., Sanchez-Ramos J. (2013). Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp. Brain Res. 228, 481–491. 10.1007/s00221-013-3579-0 PubMed DOI

Colasanti B.,, Khazan N. (1975). Electroencephalographic studies on the development of tolerance and cross tolerance to mescaline in the rat. Psychopharmacol. 43, 201–205. 10.1007/bf00429251 PubMed DOI

Dos Santos R. G., Osório F. L., Crippa J. A. S., Riba J., Zuardi A. W., Hallak J. E. C. (2016). Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther. Adv. Psychopharmacol. 6, 193–213. 10.1177/2045125316638008 PubMed DOI PMC

Dos Santos R. G. (2014). Potential therapeutic effects of psilocybin/psilocin are minimized while possible adverse reactions are overrated. Ther. Drug Monit. 36, 131–132. 10.1097/ftd.0000000000000028 PubMed DOI

Duncan W. C., Jr., Ballard E. D., Zarate C. A. (2017). Ketamine-induced glutamatergic mechanisms of sleep and wakefulness: insights for developing novel treatments for disturbed sleep and mood. Handb. Exp. Pharmacol. 253, 337–358. 10.1007/164_2017_51 PubMed DOI PMC

Duncan W. C., Sarasso S., Ferrarelli F., Selter J., Riedner B. A., Hejazi N. S., et al. (2013a). Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int. J. Neuropsychopharmacol. 16, 301–311. 10.1017/s1461145712000545 PubMed DOI PMC

Duncan W. C., Selter J., Brutsche N., Sarasso S., Zarate C. A. (2013b). Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. J. Affect. Disord. 145, 115–119. 10.1016/j.jad.2012.05.042 PubMed DOI PMC

Duncan W. C.,, Zarate C. A. (2013). Ketamine, sleep, and depression: current status and new questions. Curr. Psychiatr. Rep. 15, 394 10.1007/s11920-013-0394-z PubMed DOI PMC

Ehlers C. L.,, Kupfer D. J. (1997). Slow-wave sleep: do young adult men and women age differently? J. Sleep Res. 6, 211–215. 10.1046/j.1365-2869.1997.00041.x PubMed DOI

Esser S. K., Hill S. L., Tononi G. (2007). Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30, 1617–1630. 10.1093/sleep/30.12.1617 PubMed DOI PMC

Goldschmied J. R.,, Gehrman P. (2019). An integrated model of slow-wave activity and neuroplasticity impairments in major depressive disorder. Curr. Psychiatr. Rep. 21, 30 10.1007/s11920-019-1013-4 PubMed DOI PMC

Grob C. S., Danforth A. L., Chopra G. S., Hagerty M., Mckay C. R., Halberstadt A. L., et al. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch. Gen. Psychiatr. 68, 71–78. 10.1001/archgenpsychiatry.2010.116 PubMed DOI

Groeger J. A., Zijlstra F. R. H., Dijk D.-J. (2004). Sleep quantity, sleep difficulties and their perceived consequences in a representative sample of some 2000 British adults. J. Sleep Res. 13, 359–371. 10.1111/j.1365-2869.2004.00418.x PubMed DOI

Hamann C., Rusterholz T., Studer M., Kaess M., Tarokh L. (2019). Association between depressive symptoms and sleep neurophysiology in early adolescence. JCPP (J. Child Psychol. Psychiatry) 60, 1334–1342. 10.1111/jcpp.13088 PubMed DOI

Hayley S.,, Litteljohn D. (2013). Neuroplasticity and the next wave of antidepressant strategies. Front. Cell. Neurosci. 7, 218 10.3389/fncel.2013.00218 PubMed DOI PMC

Huber R., Ghilardi M.F., Massimini M., Tononi G. (2004). Local sleep and learning. Nature 430, 78–81. 10.1038/nature02663 PubMed DOI

Jindal R. D., Friedman E. S., Berman S. R., Fasiczka A. L., Howland R. H., Thase M. E. (2003). Effects of sertraline on sleep architecture in patients with depression. J. Clin. Psychopharmacol. 23, 540–548. 10.1097/01.jcp.0000095345.32154.9a PubMed DOI

Kapur S.,, Seeman P. (2002). NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors—implications for models of schizophrenia. Mol. Psychiatr. 7, 837–844. 10.1038/sj.mp.4001093 PubMed DOI

Kay D. C.,, Martin W. R. (1978). LSD and tryptamine effects on sleep/wakefulness and electrocorticogram patterns in intact cats. Psychopharmacol. (Berl) 58, 223–228. 10.1007/bf00427383 PubMed DOI

Korčák J., Tylš F., Horáček J. (2019). Psilocybin: pharmacology, phenomenology, and theory of action. Psychiatrie 23, 11–20.

Kupfer D. J., Ulrich R. F., Coble P. A., Jarrett D. B., Grochocinski V., Doman J., et al. (1984). Application of automated REM and slow wave sleep analysis: II. Testing the assumptions of the two-process model of sleep regulation in normal and depressed subjects. Psychiatr. Res. 13, 335–343. 10.1016/0165-1781(84)90081-7 PubMed DOI

Landsness E. C., Goldstein M. R., Peterson M. J., Tononi G., Benca R. M. (2011). Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J. Psychiatr. Res. 45, 1019–1026. 10.1016/j.jpsychires.2011.02.003 PubMed DOI PMC

Lindberg E., Janson C., Gislason T., Björnsson E., Hetta J., Boman G. (1997). Sleep disturbances in a young adult population: can gender differences be explained by differences in psychological status? Sleep 20, 381–387. 10.1093/sleep/20.6.381 PubMed DOI

Ly C., Greb A. C., Cameron L. P., Wong J. M., Barragan E. V., Wilson P. C., et al. (2018). Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182. 10.1016/j.celrep.2018.05.022 PubMed DOI PMC

Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613. 10.1038/nature05278 PubMed DOI

Monti J. M. (2011). Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15, 269–281. 10.1016/j.smrv.2010.11.003 PubMed DOI

Mourtazaev M. S., Kemp B., Zwinderman A. H., Kamphuisen H. A. C. (1995). Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep 18, 557–564. 10.1093/sleep/18.7.557 PubMed DOI

Myers J. E., Buysse D. J., Thase M. E., Perel J., Miewald J. M., Cooper T. B., et al. (1993). The effects of fenfluramine on sleep and prolactin in depressed inpatients: a comparison of potential indices of brain serotonergic responsivity. Biol. Psychiatr. 34, 753–758. 10.1016/0006-3223(93)90063-j PubMed DOI

Nishida M., Nakashima Y., Nishikawa T. (2016). Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder. Nat. Sci. Sleep 8, 63–72. 10.2147/nss.s100337 PubMed DOI PMC

Palagini L., Baglioni C., Ciapparelli A., Gemignani A., Riemann D. (2013). REM sleep dysregulation in depression: state of the art. Sleep Med. Rev. 17, 377–390. 10.1016/j.smrv.2012.11.001 PubMed DOI

Plante D.T., Landsness E.C., Peterson M.J., Goldstein M.R., Riedner B.A., Wanger T., et al. (2012a). Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC Psychiatr. 12, 146 10.1186/1471-244x-12-146 PubMed DOI PMC

Plante D. T., Landsness E. C., Peterson M. J., Goldstein M. R., Wanger T., Guokas J. J., et al. (2012b). Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. Psychiatr. Res. 201, 240–244. 10.1016/j.pscychresns.2012.03.001 PubMed DOI PMC

Rantamäki T.,, Kohtala S. (2020). Encoding, consolidation, and renormalization in depression: synaptic homeostasis, plasticity, and sleep integrate rapid antidepressant effects. Pharmacol. Rev. 72, 439–465. 10.1124/pr.119.018697 PubMed DOI

Rasch B., Pommer J., Diekelmann S., Born J. (2009). Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nat. Neurosci. 12, 396–397. 10.1038/nn.2206 PubMed DOI

Reyner L.A., Horne J.A., Reyner A. (1995). Gender- and age-related differences in sleep determined by home-recorded sleep logs and actimetry from 400 adults. Sleep 18, 127–134. PubMed

Roehrs T.,, Roth T. (2010). Drug-related sleep stage changes: functional significance and clinical relevance. Sleep Medicine Clinics 5, 559–570. 10.1016/j.jsmc.2010.08.002 PubMed DOI PMC

Rosenthal R. (1991). Meta-analytic procedures for social research. Thousand Oaks, CA: Sage Publications, Inc.

Schwartz P. J., Rosenthal N. E., Wehr T. A. (2001). Band-specific electroencephalogram and brain cooling abnormalities during NREM sleep in patients with winter depression. Biol. Psychiatr. 50, 627–632. 10.1016/s0006-3223(01)01097-6 PubMed DOI

Sesso G., Bat-Pitault F., Guyon A., Plancoulaine S., Banfi T., Milioli G., et al. (2017). Electrophysiological and microstructural features of sleep in children at high risk for depression: a preliminary study. Sleep Med. 36, 95–103. 10.1016/j.sleep.2017.05.013 PubMed DOI

Sewell R. A., Halpern J. H., Pope H. G., Jr. (2006). Response of cluster headache to psilocybin and LSD. Neurology 66, 1920–1922. 10.1212/01.wnl.0000219761.05466.43 PubMed DOI

Šidák Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62, 626–633. 10.2307/2283989 DOI

Stebelska K. (2013). Fungal hallucinogens psilocin, ibotenic acid, and muscimol: analytical methods and biologic activities. Ther. Drug Monit. 35, 420–442. 10.1097/ftd.0b013e31828741a5 PubMed DOI

Tagaya H., Wetter T. C., Winkelmann J., Rubin M., Hundemer H.-P., Trenkwalder C., et al. (2002). Pergolide restores sleep maintenance but impairs sleep EEG synchronization in patients with restless legs syndrome. Sleep Med. 3, 49–54. 10.1016/s1389-9457(01)00116-2 PubMed DOI

Tesler N., Gerstenberg M., Huber R. (2013). Developmental changes in sleep and their relationships to psychiatric illnesses. Curr. Opin. Psychiatr. 26, 572–579. 10.1097/yco.0b013e328365a335 PubMed DOI

Tononi G.,, Cirelli C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34. 10.1016/j.neuron.2013.12.025 PubMed DOI PMC

Tyls F., Palenicek T., Horacek J. (2014). Psilocybin–summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 24, 342–356. 10.1016/j.euroneuro.2013.12.006 PubMed DOI

Vyazovskiy V. V., Cirelli C., Tononi G. (2011). Electrophysiological correlates of sleep homeostasis in freely behaving rats. Prog. Brain Res. 193, 17–38. 10.1016/b978-0-444-53839-0.00002-8 PubMed DOI PMC

Wichniak A., Wierzbicka A., Jernajczyk W. (2013). Sleep as a biomarker for depression. Int Rev Psychiatry 25, 632–645. 10.3109/09540261.2013.812067 PubMed DOI

Wichniak A., Wierzbicka A., Walecka M., Jernajczyk W. (2017). Effects of antidepressants on sleep. Curr. Psychiatr. Rep. 19, 63 10.1007/s11920-017-0816-4 PubMed DOI PMC

Wilson S.,, Argyropoulos S. (2005). Antidepressants and sleep. Drugs 65, 927–947. 10.2165/00003495-200565070-00003 PubMed DOI

Zanos P., Moaddel R., Morris P. J., Riggs L. M., Highland J. N., Georgiou P., et al. (2018). Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol. Rev. 70, 621–660. 10.1124/pr.117.015198 PubMed DOI PMC

Zhang B., Hao Y., Jia F., Tang Y., Li X., Liu W., et al. (2013). Sertraline and rapid eye movement sleep without atonia: an 8-week, open-label study of depressed patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 47, 85–92. 10.1016/j.pnpbp.2013.08.010 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...