3D visual cueing shortens the double support phase of the gait cycle in patients with advanced Parkinson's disease treated with DBS of the STN
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33382785
PubMed Central
PMC7774936
DOI
10.1371/journal.pone.0244676
PII: PONE-D-20-25979
Knihovny.cz E-zdroje
- MeSH
- chůze (způsob) fyziologie MeSH
- dvojitá slepá metoda MeSH
- hluboká mozková stimulace MeSH
- lidé středního věku MeSH
- lidé MeSH
- neurologické poruchy chůze patofyziologie terapie MeSH
- nucleus subthalamicus patofyziologie MeSH
- Parkinsonova nemoc patofyziologie terapie MeSH
- podněty * MeSH
- průzkumy a dotazníky MeSH
- senioři MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Gait disturbances have emerged as some of the main therapeutic concerns in late-stage Parkinson's disease (PD) treated with dopaminergic therapy and deep brain stimulation (DBS). External cues may help to overcome freezing of gait (FOG) and improve some of the gait parameters. AIM: To evaluate the effect of 3D visual cues and STN-DBS on gait in PD group. METHODS: We enrolled 35 PD patients treated with DBS of nucleus subthalamicus (STN-DBS). Twenty-five patients (5 females; mean age 58.9 ±6.3) and 25 sex- and age-matched controls completed the gait examination. The gait in 10 patients deteriorated in OFF state. The severity of PD was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (HY). The PD group filled the Falls Efficacy Scale-International (FES) and Freezing of Gait Questionnaire (FOGQ). Gait was examined using the GaitRite Analysis System, placed in the middle of the 10m marked path. The PD group was tested without dopaminergic medication with and without visual cueing together with the DBS switched ON and OFF. The setting of DBS was double-blind and performed in random order. RESULTS: The UPDRS was 21.9 ±9.5 in DBS ON state and 41.3 ±13.7 in DBS OFF state. HY was 2.5 ±0.6, FES 12.4 ±4.1 and FOGQ 9.4 ±5.7. In the DBS OFF state, PD group walked more slowly with shorter steps, had greater step length variability and longer duration of the double support phase compared to healthy controls. The walking speed and step length increased in the DBS ON state. The double support phase was reduced with 3D visual cueing and DBS; the combination of both cueing and DBS was even more effective. CONCLUSION: Cueing with 3D visual stimuli shortens the double support phase in PD patients treated with DBS-STN. The DBS is more effective in prolonging step length and increasing gait speed. We conclude that 3D visual cueing can improve walking in patients with DBS.
Zobrazit více v PubMed
Morris ME, Iansek R, Matyas TA, Summers JJ. The pathogenesis of gait hypokinesia in Parkinson's disease. Brain. 1994;117(5):1169–81. 10.1093/brain/117.5.1169 PubMed DOI
Giladi N, Shabtai H, Rozenberg E, Shabtai E. Gait festination in Parkinson's disease. Parkinsonism Relat Disord. 2001;7(2):135–8. 10.1016/s1353-8020(00)00030-4 PubMed DOI
Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. The Lancet Neurology. 2011;10(8):734–44. 10.1016/S1474-4422(11)70143-0 PubMed DOI PMC
Rochester L, Baker K, Nieuwboer A, Burn D. Targeting dopa‐sensitive and dopa‐resistant gait dysfunction in Parkinson's disease: Selective responses to internal and external cues. Movement Disorders. 2011;26(3):430–5. 10.1002/mds.23450 PubMed DOI
Curtze C, Nutt JG, Carlson‐Kuhta P, Mancini M, Horak FB. Levodopa I sa D ouble‐E dged S word for B alance and G ait in P eople W ith P arkinson's D isease. Movement disorders. 2015;30(10):1361–70. 10.1002/mds.26269 PubMed DOI PMC
Bryant MS, Rintala DH, Hou JG, Charness AL, Fernandez AL, Collins RL, et al. Gait variability in Parkinson’s disease: influence of walking speed and dopaminergic treatment. Neurological research. 2011;33(9):959–64. 10.1179/1743132811Y.0000000044 PubMed DOI PMC
Vercruysse S, Vandenberghe W, Munks L, Nuttin B, Devos H, Nieuwboer A. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease: a prospective controlled study. J Neurol Neurosurg Psychiatry. 2014;85(8):871–7. 10.1136/jnnp-2013-306336 PubMed DOI
Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. New England Journal of Medicine. 2003;349(20):1925–34. 10.1056/NEJMoa035275 PubMed DOI
Faist M, Xie J, Kurz D, Berger W, Maurer C, Pollak P, et al. Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson's disease. Brain. 2001;124(8):1590–600. 10.1093/brain/124.8.1590 PubMed DOI
Pötter‐Nerger M, Volkmann J. Deep brain stimulation for gait and postural symptoms in Parkinson's disease. Movement Disorders. 2013;28(11):1609–15. 10.1002/mds.25677 PubMed DOI
Ferraye M, Debu B, Fraix V, Xie-Brustolin J, Chabardes S, Krack P, et al. Effects of subthalamic nucleus stimulation and levodopa on freezing of gait in Parkinson disease. Neurology. 2008;70(16 Part 2):1431–7. 10.1212/01.wnl.0000310416.90757.85 PubMed DOI
Niu L, Ji LY, Li JM, Zhao DS, Huang G, Liu WP, et al. Effect of bilateral deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease. J Int Med Res. 2012;40(3):1108–13. 10.1177/147323001204000330 PubMed DOI
Rochester L, Chastin SF, Lord S, Baker K, Burn DJ. Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson's disease. J Neurol. 2012;259(6):1081–6. 10.1007/s00415-011-6301-9 PubMed DOI
Castrioto A, Lozano AM, Poon YY, Lang AE, Fallis M, Moro E. Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol. 2011;68(12):1550–6. 10.1001/archneurol.2011.182 PubMed DOI
Fasano A, Romito LM, Daniele A, Piano C, Zinno M, Bentivoglio AR, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain. 2010;133(9):2664–76. 10.1093/brain/awq221 PubMed DOI
Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson's disease: from the advanced phase towards the late stage of the disease? Parkinsonism & related disorders. 2014;20(4):376–81. 10.1016/j.parkreldis.2014.01.012 PubMed DOI
Kim R, Kim HJ, Shin C, Park H, Kim A, Paek SH, et al. Long-term effect of subthalamic nucleus deep brain stimulation on freezing of gait in Parkinson's disease. J Neurosurg. 2019;131(6):1797–804. 10.3171/2018.8.JNS18350 PubMed DOI
Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, et al. Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain. 2005;128(Pt 10):2240–9. 10.1093/brain/awh571 PubMed DOI
van Nuenen BF, Esselink RA, Munneke M, Speelman JD, van Laar T, Bloem BR. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society. 2008;23(16):2404–6. 10.1002/mds.21986 PubMed DOI
Liang GS, Chou KL, Baltuch GH, Jaggi JL, Loveland-Jones C, Leng L, et al. Long-term outcomes of bilateral subthalamic nucleus stimulation in patients with advanced Parkinson's disease. Stereotact Funct Neurosurg. 2006;84(5–6):221–7. 10.1159/000096495 PubMed DOI
Mei S, Li J, Middlebrooks E, Almeida L, Hu W, Zhang Y, et al. New onset on-medication freezing of gait after STN-DBS in Parkinson’s disease. Frontiers in neurology. 2019;10:659 10.3389/fneur.2019.00659 PubMed DOI PMC
Snijders AH, Jeene P, Nijkrake MJ, Abdo WF, Bloem BR. Cueing for freezing of gait: a need for 3-dimensional cues? The neurologist. 2012;18(6):404–5. 10.1097/NRL.0b013e31826a99d1 PubMed DOI
Janssen S, Soneji M, Nonnekes J, Bloem BR. A painted staircase illusion to alleviate freezing of gait in Parkinson's disease. J Neurol. 2016;263(8):1661–2. 10.1007/s00415-016-8195-z PubMed DOI
Nonnekes J, Růžička E, Nieuwboer A, Hallett M, Fasano A, Bloem BR. Compensation strategies for gait impairments in Parkinson disease: a review. JAMA neurology. 2019;76(6):718–25. 10.1001/jamaneurol.2019.0033 PubMed DOI
Hallett M. The intrinsic and extrinsic aspects of freezing of gait. Mov Disord. 2008;23 Suppl 2:S439–43. 10.1002/mds.21836 PubMed DOI PMC
Almeida Q, Frank J, Roy E, Jenkins M, Spaulding S, Patla A, et al. An evaluation of sensorimotor integration during locomotion toward a target in Parkinson’s disease. Neuroscience. 2005;134(1):283–93. 10.1016/j.neuroscience.2005.02.050 PubMed DOI
Vitório R, Lirani-Silva E, Pieruccini-Faria F, Moraes R, Gobbi L, Almeida Q. Visual cues and gait improvement in Parkinson’s disease: which piece of information is really important? Neuroscience. 2014;277:273–80. 10.1016/j.neuroscience.2014.07.024 PubMed DOI
Rubinstein TC, Giladi N, Hausdorff JM. The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson's disease. Mov Disord. 2002;17(6):1148–60. 10.1002/mds.10259 PubMed DOI
Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, et al. Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review. Clin Rehabil. 2005;19(7):695–713. 10.1191/0269215505cr906oa PubMed DOI
Deane K, Jones D, Playford E, Ben-Shlomo Y, Clarke C. Physiotherapy for patients with Parkinson's Disease: a comparison of techniques. The cochrane database of systematic reviews. 2001(3):CD002817-CD 10.1002/14651858.CD002817 PubMed DOI
Zhao Y, Nonnekes J, Storcken EJ, Janssen S, van Wegen EE, Bloem BR, et al. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease. Journal of neurology. 2016;263(6):1156–65. 10.1007/s00415-016-8115-2 PubMed DOI PMC
Barthel C, Nonnekes J, Van Helvert M, Haan R, Janssen A, Delval A, et al. The laser shoes: A new ambulatory device to alleviate freezing of gait in Parkinson disease. Neurology. 2018;90(2):e164–e71. 10.1212/WNL.0000000000004795 PubMed DOI
Tang L, Gao C, Wang D, Liu A, Chen S, Gu D. Rhythmic laser cue is beneficial for improving gait performance and reducing freezing of turning in Parkinson’s disease patients with freezing of gait. International Journal of Clinical and Experimental Medicine. 2017;10(12):16802–8.
Nieuwboer A, Rochester L, Jones D. Cueing gait and gait-related mobility in patients with Parkinson's disease: developing a therapeutic method based on the international classification of functioning, disability, and health. Topics in Geriatric Rehabilitation. 2008;24(2):151–65.
Nieuwboer A, Rochester L, Jones D. Cueing Gait and Gait‐related Mobility in Patients With Parkinson's Disease: Developing a Therapeutic Method Based on the International Classification of Functioning, Disability, and Health. Topics in Geriatric Rehabilitation. 2008;24(2):151–65.
Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed “Up & Go” test in people with Parkinson disease. Physical therapy. 2001;81(2):810–8. 10.1093/ptj/81.2.810 PubMed DOI
Roemmich RT, Nocera JR, Vallabhajosula S, Amano S, Naugle KM, Stegemöller EL, et al. Spatiotemporal variability during gait initiation in Parkinson's disease. Gait & posture. 2012;36(3):340–3. 10.1016/j.gaitpost.2012.01.018 PubMed DOI PMC
Williams DS, Martin AE. Gait Modification when Decreasing Double Support Percentage. Journal of biomechanics. 2019. 10.1016/j.jbiomech.2019.05.028 PubMed DOI
Bauby CE, Kuo AD. Active control of lateral balance in human walking. Journal of biomechanics. 2000;33(11):1433–40. 10.1016/s0021-9290(00)00101-9 PubMed DOI
Hausdorff JM. Gait variability: methods, modeling and meaning. Journal of neuroengineering and rehabilitation. 2005;2(1):19 10.1186/1743-0003-2-19 PubMed DOI PMC
Montgomery E, Gale JT, editors. Mechanisms of deep brain stimulation: implications for physiology, pathophysiology and future therapies. 10th Annual Conference of the International FES Society, Montreal; 2005.
Group D-BSfPsDS. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. New England Journal of Medicine. 2001;345(13):956–63. PubMed
Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nature Reviews Neuroscience. 2010;11(11):760–72. 10.1038/nrn2915 PubMed DOI PMC
Beeler JA, Petzinger G, Jakowec MW. The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson’s disease. Frontiers in neurology. 2013;4:134 10.3389/fneur.2013.00134 PubMed DOI PMC
Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2009;19(2):026113. PubMed PMC
Tian Q, Chastan N, Bair W-N, Resnick SM, Ferrucci L, Studenski SA. The brain map of gait variability in aging, cognitive impairment and dementia—a systematic review. Neuroscience & Biobehavioral Reviews. 2017;74:149–62. PubMed PMC
Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics indicates aging affects variability during gait. Clinical biomechanics. 2003;18(5):435–43. 10.1016/s0268-0033(03)00029-9 PubMed DOI