• This record comes from PubMed

Viral pathogenesis of SARS-CoV-2 infection and male reproductive health

. 2021 Jan ; 11 (1) : 200347. [epub] 20210120

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Review

Coronavirus disease 2019 (COVID-19) has emerged as a new public health crisis, threatening almost all aspects of human life. Originating in bats, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted to humans through unknown intermediate hosts, where it is primarily known to cause pneumonia-like complications in the respiratory system. Organ-to-organ transmission has not been ruled out, thereby raising the possibility of the impact of SARS-CoV-2 infection on multiple organ systems. The male reproductive system has been hypothesized to be a potential target of SARS-CoV-2 infection, which is supported by some preliminary evidence. This may pose a global threat to male fertility potential, as men are more prone to SARS-CoV-2 infection than women, especially those of reproductive age. Preliminary reports have also indicated the possibility of sexual transmission of SARS-CoV-2. It may cause severe complications in infected couples. This review focuses on the pathophysiology of potential SARS-CoV-2 infection in the reproductive organs of males along with their invasion mechanisms. The risks of COVID-19 on male fertility as well as the differences in vulnerability to SARS-CoV-2 infection compared with females have also been highlighted.

See more in PubMed

Li Q, et al. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207. (10.1056/NEJMoa2001316) PubMed DOI PMC

World Health Organization (WHO). Coronavirus disease (COVID-19) pandemic. See https://covid19.who.int/ (accessed 22 December 2020).

Zhou P, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. (10.1038/s41586-020-2012-7) PubMed DOI PMC

Zhang, Y, et al. 2020. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 127, 110195 (10.1016/j.biopha.2020.110195) PubMed DOI PMC

Youssef K, Khallouk A. In press. Male genital damage in COVID-19 patients: are available data relevant? Asian J. Urol. (10.1016/j.ajur.2020.06.005) PubMed DOI PMC

Fan C, Li K, Ding Y, Lu W, Wang J. 2020. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. MedRxiv (10.1011/2020.02.12.20022418) DOI

Cardona Maya WD, Du Plessis SS, Velilla PA.. 2020. SARS-CoV-2 and the testis: similarity with other viruses and routes of infection. Reprod. Biomed. Online 40, 763–764. (10.1016/j.rbmo.2020.04.009) PubMed DOI PMC

Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, Kruessel J-S, Bielfeld AP. 2020. Assessment of SARS-CoV-2 in human semen- a cohort study. Fertil. Steril. 114, 233–238. (10.1016/j.fertnstert.2020.05.028) PubMed DOI PMC

Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M, Hua J. 2020. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J. Cell Mol. Med. 24, 9472–9477. (10.1111/jcmm.15541) PubMed DOI PMC

Li D, Jin M, Bao P, Zhao W, Zhang S. 2020. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Newt. Open 3, e208292 (10.1001/jamanetworkopen.2020.8292) PubMed DOI PMC

Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, Peh S, Gu J. 2006. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 74, 410–416. (10.1095/biolreprod.105.044776) PubMed DOI PMC

Song C, et al. 2020. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Biol. Reprod. 103, 4–6. (10.1093/biolre/ioaa050) PubMed DOI PMC

Peiris JSM, et al. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325. (10.1016/S0140-6736(03)13077-2) PubMed DOI PMC

Chan-Yeung M, Xu R-H. 2020. SARS: epidemiology. Respirology 8, S9–S14. (10.1046/j.1440-1843.2003.00518.x) PubMed DOI PMC

Fan Y, Zhao K, Shi ZL, Zhou P. 2019. Bat coronaviruses in China. Viruses 11, 210 (10.3390/v11030210) PubMed DOI PMC

Hui DS, et al. 2020. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264–266. (10.1016/j.ijid.2020.01.009) PubMed DOI PMC

Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah R, Paniz-Mondolfi A, Pagliano P, Esposito S. 2020. History is repeating itself: probable zoonotic spillover as the cause of the 2019 novel coronavirus epidemic. Infez. Med. 28, 3–5. PubMed

Ison MG, Hirsch HH. 2019. Community-acquired respiratory viruses in transplant patients: diversity, impact, unmet clinical needs. Clin. Microbiol. Rev. 32, e00042-19 (10.1128/CMR.00042-19) PubMed DOI PMC

Cheke RS, Shinde S, Ambhore J, Adhao V, Cheke D. 2020. Coronavirus: hotspot on coronavirus disease 2019 in India. Indian J. Med. Sci. 72, 29–34. (10.25259/IJMS_33_2020) DOI

Liu Y-C, Kuo R-L, Shih S-R. 2020. COVID-19: the first documented coronavirus pandemic in history. Biomed. J. 43, 328–333. (10.1016/j.bj.2020.04.007) PubMed DOI PMC

Zhu N, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733. (10.1056/NEJMoa2001017) PubMed DOI PMC

Alanagreh L, Alzoughool F, Atoum M. 2020. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 9, 331 (10.3390/pathogens9050331) PubMed DOI PMC

Guo Y-R, Cao Q-D, Homg Z-S, Tan Y-Y, Chen S-D, Jin H-J, Tan K-S, Wang D-Y, Yan Y. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak: an update on the status. Mil. Med. Res. 7, 11 (10.1186/s40779-020-00240-0) PubMed DOI PMC

Lam TT-Y, et al. 2020. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285. (10.1038/s41586-020-2169-0) PubMed DOI

Zhang T, Wu Q, Zhang Z. 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1578 (10.1016/j.cub.2020.03.063) PubMed DOI PMC

Huang C, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. (10.1016/S0140-6736(20)30183-5) PubMed DOI PMC

Chen T, et al. 2020. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Br. Med. J. 368, m1091 (10.1136/bmj.m1091) PubMed DOI PMC

Heffernan DS, Evans HL, Huston JM, Claridge JA, Blake DP, May AK, Beilman GS, Barie PS, Kaplan LJ. 2020. Surgical infection society guidance for peartive and peri-operative care of adult patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Surg. Infect. 21, 301–308. (10.1089/sur.2020.101) PubMed DOI

Douglas GC, O'Bryan M, Hedger MP, Lee DKL, Yarski MA, Smith AI, Lew RA. 2004. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 145, 4703–4711. (10.1210/en.2004-0443) PubMed DOI

Sun J 2020. The hypothesis that SARS-CoV-2 affects male reproductive ability by regulating autophagy. Med. Hypotheses 143, 110083 (10.1016/j.mehy.2020.110083) PubMed DOI PMC

Zou X, Chen K, Zou J, Han P, Hao J, Han Z. 2020. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14, 185–192. (10.1007/s11684-020-0754-0) PubMed DOI PMC

Lu G, Wang Q, Gao GF. 2015. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 23, 468–478. (10.1016/j.tim.2015.06.003) PubMed DOI PMC

Wang Q, et al. 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904. (10.1016/j.cell.2020.03.045) PubMed DOI PMC

Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85, 873–882. (10.1128/JVI.02062-10) PubMed DOI PMC

Hoffman M, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280. (10.1016/j.cell.2020.02.052) PubMed DOI PMC

Ning L, et al. 2020. Novel coronavirus (SARS-CoV-2) infection in a renal transplant recipient: case report. Am. J. Transplant 20, 1864–1868. (10.1111/ajt.15897) PubMed DOI PMC

Wang Z, Xu X. 2020. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 9, 920 (10.3390/cells9040920) PubMed DOI PMC

Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, Chen Y, Zhang Y. 2020. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 5, 128 (10.1038/s41392-020-00243-2) PubMed DOI PMC

Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, Xiao S-Y. 2020. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 33, 1007–1014. (10.1038/s41379-020-0536-x) PubMed DOI PMC

Rastrelli G, et al. In press. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. (10.1111/andr.12821) PubMed DOI PMC

Schroeder M, et al. 2020. The majority of male patients with COVID-19 present low testosterone levels on admission to intensive care in Hamburg, Germany: a retrospective cohort study. MedRxiv.

Dutta S., Sengupta P. In press SARS-CoV-2 and male infertility: possible multifaceted pathology. Reprod. Sci . 1–4. (10.1007/s43032-020-00261-z) PubMed DOI PMC

Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. 2020. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 153, 725–733. (10.1093/ajcp/aqaa062) PubMed DOI PMC

Yang M, et al. 2020. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur. Urol. Focus 6, 1124–1129. (10.1016/j.euf.2020.05.009) PubMed DOI PMC

Ma L, Xie W, Li D, Shi L, Mao, Y, Xiong Y, Zhang Y, Zhang M. 2020. Effect of SARS-CoV-2 infection upon male gonadal functions: a single centre-based study. MedRxiv (10.1101/2020.03.21.20037267) DOI

Pan F, et al. 2020. No evidence of severe acute respiratory syndrome coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil. Steril. 113, 1135–1139. (10.1016/j.fertnstert.2020.04.024) PubMed DOI PMC

Corona G, et al. 2020. SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS). J. Endocrinol. Invest. 43, 1153–1157. (10.1007/s40618-020-01290-w) PubMed DOI PMC

Verma S, Saksena S, Ardekani-Sadri H. 2020. ACE2 receptor expression in testis: implications in coronavirus disease 2019 pathogenesis. Biol. Reprod. 103, 449–451. (10.1093/biolre/ioaa080) PubMed DOI PMC

Mital P, Hinton BT, Dufour JM. 2011. The blood-testis and blood-epididymis barriers are more than just tight junctions. Biol. Reprod. 84, 851–858. (10.1095/biolreprod.110.087452) PubMed DOI PMC

Kaur G, Thompson LA, Dufour JM. 2014. Sertoli cells- immunological sentinels of spermatogenesis. Semin. Cell Dev. Biol. 3, 36–44. (10.1016/j.semcdb.2014.02.011) PubMed DOI PMC

Paoli D, Pallotti F, Colangelo S, Basilico F, Mazzuti L, Turriziani O, Antonelli G, Lenzi A, Lombardo F. 2020. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Invest. 43, 1819–1822. (10.1007/s40618-020-01261-1) PubMed DOI PMC

Liu C, et al. 2020. Autophagy is required for ectoplasmic specialization assembly in Sertoli cells. Autophagy 12, 814–832. (10.1080/15548627.2016.1159377) PubMed DOI PMC

Gassen NC, et al. 2020. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxiv (10.1101/2020.04.15.997254) DOI

Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodriguez L. 2020. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 54, 62–75. (10.1016/j.cytogfr.2020.06.001) PubMed DOI PMC

Batiha O, Al-Deeb T, Al-Zoubi E, Alsharu E. 2020. Impact of COVID-19 and other viruses on reproductive health. Andrologia 52, e13791 (10.1111/and.13791) PubMed DOI PMC

Dutta S, Sengupta P. 2020. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: can testicular-adrenal crosstalk be ruled-out? J. Basic. Clin. Physiol. 31, 20200205 (10.1515/jbcpp-2020-0205) PubMed DOI

Makker K, Agarwal A, Sharma R. 2009. Oxidative stress & male infertility. Indian J. Med. Res. 129, 357–367. PubMed

Agarwal A, Verk G, Ong C, Du Plessis SS.. 2014. Effect of oxidative stress on male reproduction. World J. Men’s Health 32, 1–17. (10.5534/wjmh.2014.32.1.1) PubMed DOI PMC

Roychoudhury S, Sharma R, Sikka S, Agarwal A. 2016. Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. J. Assist. Reprd. Genet. 33, 627–635. (10.1007/s10815-016-0677-5) PubMed DOI PMC

Alahmar AT 2019. Role of oxidative stress in male infertility: an updated review. J. Hum. Reprod. Sci. 12, 4–18. (10.4103/jhrs.JHRS_150_18) PubMed DOI PMC

Agarwal A, Roychoudhury S, Bjugstad KB, Cho C-L. 2016. Oxidation-reduction potential of semen: what is the role in the treatment of male infertility? Ther. Adv. Urol. 8, 302–318. (10.1177/1756287216652779) PubMed DOI PMC

Oliva R 2006. Protamines and male infertility. Hum. Reprod. Update 12, 417–435. (10.1093/humupd/dml009) PubMed DOI

Saleh R, Agarwal A. 2002. Oxidative stress and male infertility: from research bench to clinical practice. J. Androl. 23, 737–752. PubMed

Agarwal A, Hamada A, Esteves SC. 2012. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat. Rev. Urol. 9, 678–690. (10.1038/nrurol.2012.197) PubMed DOI

Dutta S, Majzoub A, Agarwal A. 2019. Oxidative stress and sperm function: a systematic review on evaluation and management. Arab. J. Urol. 17, 87–97. (10.1080/2090598X.2019.1599624) PubMed DOI PMC

Sengupta P, Dutta S. 2020. Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. Eur. J. Contracept. Reprod. Health Care 25, 405–406. (10.1080/13625187.2020.1787376) PubMed DOI

Wu PY, Scarlata E, O'Flaherty C. 2020. Long-term adverse effects of oxidative stress on rat epididymis and spermatozoa. Antioxidants 9, 170 (10.3390/antiox9020170) PubMed DOI PMC

Griswold MD, McLean D.. 2006. The Sertoli cells. In Knobil and Neill’s physiology of reproduction, vol. 3 (ed. Neill JD), pp. 949–976, 3rd edn St Louis, MO: Academic Press.

O'Flaherty C, Boisvert A, Manku G, Culty M. 2019. Protective role of peroxiredoxins against reactive oxygen species in neonatal rat testicular gonocytes. Antioxidants 9, 32 (10.3390/antiox9010032) PubMed DOI PMC

Liu Y, O'Flaherty C. 2017. In vivo oxidative stress alters thiol redox status of peroxiredoxin 1 and 6 and impairs rat sperm quality. Asian J. Androl. 19, 73–79. (10.4103/1008-682X.170863) PubMed DOI PMC

Li R, et al. 2020. Potential risk of SARS-CoV-2 infection on reproductive health. Reprod. Biomed. Online 41, 89–95. (10.1016/j.rbmo.2020.04.018) PubMed DOI PMC

Almasry SM, Hassan ZA, Elsaed WM, Elbastawisy YM. 2017. Structural evaluation of the peritubular sheath of rat's testes after administration of ribavirin: a possible impact on the testicular function. Int. J. Immunopathol. Pharmacol. 30, 282–296. (10.1177/0394632017726261) PubMed DOI PMC

Narayana K, D'Souza, UJA, Rao KPS. 2002. Effect of ribavirin on epididymal sperm count in rat. Indian J. Physiol. Pharmacol. 46, 97–101. PubMed

Pecou S, Moinard N, Walschaerts M, Pasquier C, Daudin M, Bujan L. 2009. Ribavirin and pegylated interferon treatment for hepatitis C was associated not only with semen alterations but also with sperm deoxyribonucleic acid fragmentation in humans. Fertil. Steril. 91, e17–e22. (10.1016/j.fertnstert.2008.07.1755) PubMed DOI

Drobnis EZ, Nangia AK. 2017. Antivirals and male reproduction. Adv. Exp. Med. Biol. 1034, 163–178. (10.1007/978-3-319-69535-8_11) PubMed DOI

Bukhari SA, Ahmed MM, Anjum F, Anwar H, Naqvi SAR, Zahra T, Batool U. 2018. Post interferon therapy decreases male fertility through gonadotoxic effect. Pak. J. Pharm. Sci. 31, 1565–1570. PubMed

Thakur V, Jain A. 2020. COVID 2019-suicides: a global psychological pandemic. Brain Behav. Immun. 88, 952–953. (10.1016/j.bbi.2020.04.062) PubMed DOI PMC

Serafini G, Parmigiani B, Amerio A, Aguglia A, Sher L, Amore M. 2020. The psychological impact of COVID-19 on mental health in the general population. QJM 113, 531–537. (10.1093/qjmed/hcaa201) PubMed DOI PMC

Duan L, Zhu G. 2020. Psychological interventions for people affected by the COVID-19 epidemic. Lancet Psychiatry 7, 300–302. (10.1016/S2215-0366(20)30073-0) PubMed DOI PMC

Rooney KL, Domar AD. 2018. The relationship between stress and infertility. Dialogues Clin. Neurosci. 20, 41–47. (10.31887/DCNS.2018.20.1/klrooney) PubMed DOI PMC

Berardis DD, et al. 2014. Psychopathology, emotional aspects and psychological counseling in infertility: a review. Clin. Ter. 165, 163–169. (10.7417/CT.2014.1716) PubMed DOI

Evans-Hoekaer E, et al. 2018. Major depression, antidepressant use, and male and female infertility. Fertil. Steril. 109, 879–887. (10.1016/j.fertnstert.2018.01.029) PubMed DOI PMC

Zou P, et al. 2018. Semen quality in Chinese college students: associations with depression and physical activity in a cross-sectional study. Psychosom. Med. 80, 564–572. (10.1097/PSY.0000000000000595) PubMed DOI

Yehuda R, Lehrner A, Rosenbaum TY. 2015. PTSD and sexual dysfunction in men and women. J. Sex. Med. 12, 1107–1119. (10.1111/jsm.12856) PubMed DOI

Khalili MA, Leisegang K, Majzoub A, Finelli R, Panner Selvam MK, Henkel R, Mojgan M, Agarwal A. 2020. Male infertility and the COVID-19 pandemic: systemic review of the literature. World J. Mens. Health. 38, 506–520. (10.5534/wjmh.200134) PubMed DOI PMC

Adiga SK, Tholeti P, Uppangala S, Kalthur G, Gualtieri R, Talevi R. 2020. Fertility preservation during the COVID-19 pandemic: mitigating the viral contamination risk to reproductive stage in cryostage. Reprod. Biomed. Online 41, 991–997. (10.1016/j.rbmo.2020.09.013) PubMed DOI PMC

Pomeroy KO, Schiewe MC. 2020. Cryopreservation and IVF in the time of Covid-19: what is the best good tissue practice (GTP). J. Assist. Reprod. Genet. 37, 2393–2398. (10.1007/s10815-020-01904-5) PubMed DOI PMC

Paoli D, et al. In press. Sperm cryopreservation during the SARS-CoV-2 pandemic. J. Endocrinol. Invest. PubMed PMC

Onder G, Rezza G, Brusaferro S. 2020. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323, 1775–1776. PubMed

Shim E, Tariq A, Choi W, Lee Y, Chowell G. 2020. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 93, 339–344. (10.1016/j.ijid.2020.03.031) PubMed DOI PMC

Rozenberg S, Vandromme J, Martin C. 2020. Are we equal in adversity? Does COVID-19 affect women and men differently? Maturitas 138, 62–68. (10.1016/j.maturitas.2020.05.009) PubMed DOI PMC

Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11, 6317 (10.1038/s41467-020-19741-6) PubMed DOI PMC

Bwire GM 2020. Coronavirus: why men are more vulnerable to COVID-19 than women? SN Compr. Clin. Med. 2, 874–876. PubMed PMC

Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. 2020. Single-cell RNA expression profiling of ACE2, the recptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 202, 756–759. (10.1164/rccm.202001-0179LE) PubMed DOI PMC

Patel SK, Velkoska E, Burrell LM. 2013. Emerging markers in cardiovascular disease: where does angiotensin-converting enzyme 2 fit in? Clin. Exp. Pharmacol. Physiol. 40, 551–559. (10.1111/1440-1681.12069) PubMed DOI

Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. 2020. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex. Differ. 11, 29 (10.1186/s13293-020-00304-9) PubMed DOI PMC

Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. (10.1038/nri.2016.90) PubMed DOI

Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. 2017. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 198, 4046–4053. (10.4049/jimmunol.1601896) PubMed DOI PMC

Elgendy IY, Pepine CJ. 2020. Why are women better protected from COVID-19: clues for men? Sex and COVID-19. Int. J. Cardiol. 315, 105–106. (10.1016/j.ijcard.2020.05.026) PubMed DOI PMC

De la Vega R, Ruiz-Barquin R, Boros S, Szabo A. 2020. Could attitudes towards COVID-19 in Spain render men more vulnerable than women? Glob. Public Health 15, 1278–1291. (10.1080/17441692.2020.1791212) PubMed DOI

Ma X, et al. In press. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell Mol. Immunol. (10.1038/s41423-020-00604-5) PubMed DOI PMC

Fraietta R, Pasqualotto FF, Roque M, Taitson PF. 2020. SARS-CoV-2 and male reproductive health. JBRA Assist. Reprod. 24, 347–350. PubMed PMC

Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Choudhury AP, Ahmed ABF, Bhattacharjee S, Slama P. 2020. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int. J. Environ. Res. Public Health 17, 9411 (10.3390/ijerph17249411) PubMed DOI PMC

Jeyaraman M, et al. 2020. Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochim. Biophys. Acta. Mol. Basis Dis. 1867, 1660 (10.1016/j.bbadis.2020.166014) PubMed DOI PMC

Satyam R, Bhardwaj T, Goel S, Jha NK, Jha SK, Nand P, Ruokolainen J, Kamal MA, Kesari KK. In print. miRNAs in SARS-CoV 2: a spoke in the wheel of pathogenesis. Curr. Pharm. Des. (10.2174/1381612826999201001200529) PubMed DOI

Cattrini C, Bersanelli M, Latocca MM, Conte B, Vallome G, Boccardo F. 2020. Sex hormones and hormone therapy during covid-19 pandemic: Implications for patients with cancer. Cancers 12, 2325 (10.3390/cancers12082325) PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...