Viral pathogenesis of SARS-CoV-2 infection and male reproductive health
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Review
PubMed
33465325
PubMed Central
PMC7881178
DOI
10.1098/rsob.200347
Knihovny.cz E-resources
- Keywords
- ACE2, COVID-19, SARS-CoV-2 infection, fertility, male reproduction, testicular damage,
- MeSH
- COVID-19 immunology pathology virology MeSH
- Cytokines metabolism MeSH
- DNA Fragmentation MeSH
- Humans MeSH
- Lymphocytes metabolism virology MeSH
- Oxidative Stress MeSH
- Reproductive Health * MeSH
- SARS-CoV-2 isolation & purification pathogenicity MeSH
- Spermatozoa physiology virology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cytokines MeSH
Coronavirus disease 2019 (COVID-19) has emerged as a new public health crisis, threatening almost all aspects of human life. Originating in bats, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted to humans through unknown intermediate hosts, where it is primarily known to cause pneumonia-like complications in the respiratory system. Organ-to-organ transmission has not been ruled out, thereby raising the possibility of the impact of SARS-CoV-2 infection on multiple organ systems. The male reproductive system has been hypothesized to be a potential target of SARS-CoV-2 infection, which is supported by some preliminary evidence. This may pose a global threat to male fertility potential, as men are more prone to SARS-CoV-2 infection than women, especially those of reproductive age. Preliminary reports have also indicated the possibility of sexual transmission of SARS-CoV-2. It may cause severe complications in infected couples. This review focuses on the pathophysiology of potential SARS-CoV-2 infection in the reproductive organs of males along with their invasion mechanisms. The risks of COVID-19 on male fertility as well as the differences in vulnerability to SARS-CoV-2 infection compared with females have also been highlighted.
Amity Institute of Molecular Medicine and Stem Cell Research Amity University Noida India
Department of Applied Physics School of Science Aalto University Espoo Finland
Department of Life Science and Bioinformatics Assam University Silchar India
Department of Microbiology R G Kar Medical College and Hospital Kolkata India
Department of Obstetrics and Gynecology Silchar Medical College and Hospital Silchar India
Department of Urology and Andrology AIG Hospitals Gachibowli Hyderabad India
See more in PubMed
Li Q, et al. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207. (10.1056/NEJMoa2001316) PubMed DOI PMC
World Health Organization (WHO). Coronavirus disease (COVID-19) pandemic. See https://covid19.who.int/ (accessed 22 December 2020).
Zhou P, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. (10.1038/s41586-020-2012-7) PubMed DOI PMC
Zhang, Y, et al. 2020. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 127, 110195 (10.1016/j.biopha.2020.110195) PubMed DOI PMC
Youssef K, Khallouk A. In press. Male genital damage in COVID-19 patients: are available data relevant? Asian J. Urol. (10.1016/j.ajur.2020.06.005) PubMed DOI PMC
Fan C, Li K, Ding Y, Lu W, Wang J. 2020. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. MedRxiv (10.1011/2020.02.12.20022418) DOI
Cardona Maya WD, Du Plessis SS, Velilla PA.. 2020. SARS-CoV-2 and the testis: similarity with other viruses and routes of infection. Reprod. Biomed. Online 40, 763–764. (10.1016/j.rbmo.2020.04.009) PubMed DOI PMC
Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, Kruessel J-S, Bielfeld AP. 2020. Assessment of SARS-CoV-2 in human semen- a cohort study. Fertil. Steril. 114, 233–238. (10.1016/j.fertnstert.2020.05.028) PubMed DOI PMC
Shen Q, Xiao X, Aierken A, Yue W, Wu X, Liao M, Hua J. 2020. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J. Cell Mol. Med. 24, 9472–9477. (10.1111/jcmm.15541) PubMed DOI PMC
Li D, Jin M, Bao P, Zhao W, Zhang S. 2020. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. JAMA Newt. Open 3, e208292 (10.1001/jamanetworkopen.2020.8292) PubMed DOI PMC
Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, Peh S, Gu J. 2006. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 74, 410–416. (10.1095/biolreprod.105.044776) PubMed DOI PMC
Song C, et al. 2020. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Biol. Reprod. 103, 4–6. (10.1093/biolre/ioaa050) PubMed DOI PMC
Peiris JSM, et al. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325. (10.1016/S0140-6736(03)13077-2) PubMed DOI PMC
Chan-Yeung M, Xu R-H. 2020. SARS: epidemiology. Respirology 8, S9–S14. (10.1046/j.1440-1843.2003.00518.x) PubMed DOI PMC
Fan Y, Zhao K, Shi ZL, Zhou P. 2019. Bat coronaviruses in China. Viruses 11, 210 (10.3390/v11030210) PubMed DOI PMC
Hui DS, et al. 2020. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 91, 264–266. (10.1016/j.ijid.2020.01.009) PubMed DOI PMC
Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah R, Paniz-Mondolfi A, Pagliano P, Esposito S. 2020. History is repeating itself: probable zoonotic spillover as the cause of the 2019 novel coronavirus epidemic. Infez. Med. 28, 3–5. PubMed
Ison MG, Hirsch HH. 2019. Community-acquired respiratory viruses in transplant patients: diversity, impact, unmet clinical needs. Clin. Microbiol. Rev. 32, e00042-19 (10.1128/CMR.00042-19) PubMed DOI PMC
Cheke RS, Shinde S, Ambhore J, Adhao V, Cheke D. 2020. Coronavirus: hotspot on coronavirus disease 2019 in India. Indian J. Med. Sci. 72, 29–34. (10.25259/IJMS_33_2020) DOI
Liu Y-C, Kuo R-L, Shih S-R. 2020. COVID-19: the first documented coronavirus pandemic in history. Biomed. J. 43, 328–333. (10.1016/j.bj.2020.04.007) PubMed DOI PMC
Zhu N, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733. (10.1056/NEJMoa2001017) PubMed DOI PMC
Alanagreh L, Alzoughool F, Atoum M. 2020. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 9, 331 (10.3390/pathogens9050331) PubMed DOI PMC
Guo Y-R, Cao Q-D, Homg Z-S, Tan Y-Y, Chen S-D, Jin H-J, Tan K-S, Wang D-Y, Yan Y. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak: an update on the status. Mil. Med. Res. 7, 11 (10.1186/s40779-020-00240-0) PubMed DOI PMC
Lam TT-Y, et al. 2020. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285. (10.1038/s41586-020-2169-0) PubMed DOI
Zhang T, Wu Q, Zhang Z. 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1578 (10.1016/j.cub.2020.03.063) PubMed DOI PMC
Huang C, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. (10.1016/S0140-6736(20)30183-5) PubMed DOI PMC
Chen T, et al. 2020. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Br. Med. J. 368, m1091 (10.1136/bmj.m1091) PubMed DOI PMC
Heffernan DS, Evans HL, Huston JM, Claridge JA, Blake DP, May AK, Beilman GS, Barie PS, Kaplan LJ. 2020. Surgical infection society guidance for peartive and peri-operative care of adult patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Surg. Infect. 21, 301–308. (10.1089/sur.2020.101) PubMed DOI
Douglas GC, O'Bryan M, Hedger MP, Lee DKL, Yarski MA, Smith AI, Lew RA. 2004. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 145, 4703–4711. (10.1210/en.2004-0443) PubMed DOI
Sun J 2020. The hypothesis that SARS-CoV-2 affects male reproductive ability by regulating autophagy. Med. Hypotheses 143, 110083 (10.1016/j.mehy.2020.110083) PubMed DOI PMC
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. 2020. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14, 185–192. (10.1007/s11684-020-0754-0) PubMed DOI PMC
Lu G, Wang Q, Gao GF. 2015. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 23, 468–478. (10.1016/j.tim.2015.06.003) PubMed DOI PMC
Wang Q, et al. 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904. (10.1016/j.cell.2020.03.045) PubMed DOI PMC
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85, 873–882. (10.1128/JVI.02062-10) PubMed DOI PMC
Hoffman M, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280. (10.1016/j.cell.2020.02.052) PubMed DOI PMC
Ning L, et al. 2020. Novel coronavirus (SARS-CoV-2) infection in a renal transplant recipient: case report. Am. J. Transplant 20, 1864–1868. (10.1111/ajt.15897) PubMed DOI PMC
Wang Z, Xu X. 2020. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells 9, 920 (10.3390/cells9040920) PubMed DOI PMC
Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, Chen Y, Zhang Y. 2020. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 5, 128 (10.1038/s41392-020-00243-2) PubMed DOI PMC
Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, Xiao S-Y. 2020. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 33, 1007–1014. (10.1038/s41379-020-0536-x) PubMed DOI PMC
Rastrelli G, et al. In press. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. (10.1111/andr.12821) PubMed DOI PMC
Schroeder M, et al. 2020. The majority of male patients with COVID-19 present low testosterone levels on admission to intensive care in Hamburg, Germany: a retrospective cohort study. MedRxiv.
Dutta S., Sengupta P. In press SARS-CoV-2 and male infertility: possible multifaceted pathology. Reprod. Sci . 1–4. (10.1007/s43032-020-00261-z) PubMed DOI PMC
Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. 2020. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 153, 725–733. (10.1093/ajcp/aqaa062) PubMed DOI PMC
Yang M, et al. 2020. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur. Urol. Focus 6, 1124–1129. (10.1016/j.euf.2020.05.009) PubMed DOI PMC
Ma L, Xie W, Li D, Shi L, Mao, Y, Xiong Y, Zhang Y, Zhang M. 2020. Effect of SARS-CoV-2 infection upon male gonadal functions: a single centre-based study. MedRxiv (10.1101/2020.03.21.20037267) DOI
Pan F, et al. 2020. No evidence of severe acute respiratory syndrome coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil. Steril. 113, 1135–1139. (10.1016/j.fertnstert.2020.04.024) PubMed DOI PMC
Corona G, et al. 2020. SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS). J. Endocrinol. Invest. 43, 1153–1157. (10.1007/s40618-020-01290-w) PubMed DOI PMC
Verma S, Saksena S, Ardekani-Sadri H. 2020. ACE2 receptor expression in testis: implications in coronavirus disease 2019 pathogenesis. Biol. Reprod. 103, 449–451. (10.1093/biolre/ioaa080) PubMed DOI PMC
Mital P, Hinton BT, Dufour JM. 2011. The blood-testis and blood-epididymis barriers are more than just tight junctions. Biol. Reprod. 84, 851–858. (10.1095/biolreprod.110.087452) PubMed DOI PMC
Kaur G, Thompson LA, Dufour JM. 2014. Sertoli cells- immunological sentinels of spermatogenesis. Semin. Cell Dev. Biol. 3, 36–44. (10.1016/j.semcdb.2014.02.011) PubMed DOI PMC
Paoli D, Pallotti F, Colangelo S, Basilico F, Mazzuti L, Turriziani O, Antonelli G, Lenzi A, Lombardo F. 2020. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Invest. 43, 1819–1822. (10.1007/s40618-020-01261-1) PubMed DOI PMC
Liu C, et al. 2020. Autophagy is required for ectoplasmic specialization assembly in Sertoli cells. Autophagy 12, 814–832. (10.1080/15548627.2016.1159377) PubMed DOI PMC
Gassen NC, et al. 2020. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxiv (10.1101/2020.04.15.997254) DOI
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodriguez L. 2020. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 54, 62–75. (10.1016/j.cytogfr.2020.06.001) PubMed DOI PMC
Batiha O, Al-Deeb T, Al-Zoubi E, Alsharu E. 2020. Impact of COVID-19 and other viruses on reproductive health. Andrologia 52, e13791 (10.1111/and.13791) PubMed DOI PMC
Dutta S, Sengupta P. 2020. SARS-CoV-2 infection, oxidative stress and male reproductive hormones: can testicular-adrenal crosstalk be ruled-out? J. Basic. Clin. Physiol. 31, 20200205 (10.1515/jbcpp-2020-0205) PubMed DOI
Makker K, Agarwal A, Sharma R. 2009. Oxidative stress & male infertility. Indian J. Med. Res. 129, 357–367. PubMed
Agarwal A, Verk G, Ong C, Du Plessis SS.. 2014. Effect of oxidative stress on male reproduction. World J. Men’s Health 32, 1–17. (10.5534/wjmh.2014.32.1.1) PubMed DOI PMC
Roychoudhury S, Sharma R, Sikka S, Agarwal A. 2016. Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. J. Assist. Reprd. Genet. 33, 627–635. (10.1007/s10815-016-0677-5) PubMed DOI PMC
Alahmar AT 2019. Role of oxidative stress in male infertility: an updated review. J. Hum. Reprod. Sci. 12, 4–18. (10.4103/jhrs.JHRS_150_18) PubMed DOI PMC
Agarwal A, Roychoudhury S, Bjugstad KB, Cho C-L. 2016. Oxidation-reduction potential of semen: what is the role in the treatment of male infertility? Ther. Adv. Urol. 8, 302–318. (10.1177/1756287216652779) PubMed DOI PMC
Oliva R 2006. Protamines and male infertility. Hum. Reprod. Update 12, 417–435. (10.1093/humupd/dml009) PubMed DOI
Saleh R, Agarwal A. 2002. Oxidative stress and male infertility: from research bench to clinical practice. J. Androl. 23, 737–752. PubMed
Agarwal A, Hamada A, Esteves SC. 2012. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat. Rev. Urol. 9, 678–690. (10.1038/nrurol.2012.197) PubMed DOI
Dutta S, Majzoub A, Agarwal A. 2019. Oxidative stress and sperm function: a systematic review on evaluation and management. Arab. J. Urol. 17, 87–97. (10.1080/2090598X.2019.1599624) PubMed DOI PMC
Sengupta P, Dutta S. 2020. Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. Eur. J. Contracept. Reprod. Health Care 25, 405–406. (10.1080/13625187.2020.1787376) PubMed DOI
Wu PY, Scarlata E, O'Flaherty C. 2020. Long-term adverse effects of oxidative stress on rat epididymis and spermatozoa. Antioxidants 9, 170 (10.3390/antiox9020170) PubMed DOI PMC
Griswold MD, McLean D.. 2006. The Sertoli cells. In Knobil and Neill’s physiology of reproduction, vol. 3 (ed. Neill JD), pp. 949–976, 3rd edn St Louis, MO: Academic Press.
O'Flaherty C, Boisvert A, Manku G, Culty M. 2019. Protective role of peroxiredoxins against reactive oxygen species in neonatal rat testicular gonocytes. Antioxidants 9, 32 (10.3390/antiox9010032) PubMed DOI PMC
Liu Y, O'Flaherty C. 2017. In vivo oxidative stress alters thiol redox status of peroxiredoxin 1 and 6 and impairs rat sperm quality. Asian J. Androl. 19, 73–79. (10.4103/1008-682X.170863) PubMed DOI PMC
Li R, et al. 2020. Potential risk of SARS-CoV-2 infection on reproductive health. Reprod. Biomed. Online 41, 89–95. (10.1016/j.rbmo.2020.04.018) PubMed DOI PMC
Almasry SM, Hassan ZA, Elsaed WM, Elbastawisy YM. 2017. Structural evaluation of the peritubular sheath of rat's testes after administration of ribavirin: a possible impact on the testicular function. Int. J. Immunopathol. Pharmacol. 30, 282–296. (10.1177/0394632017726261) PubMed DOI PMC
Narayana K, D'Souza, UJA, Rao KPS. 2002. Effect of ribavirin on epididymal sperm count in rat. Indian J. Physiol. Pharmacol. 46, 97–101. PubMed
Pecou S, Moinard N, Walschaerts M, Pasquier C, Daudin M, Bujan L. 2009. Ribavirin and pegylated interferon treatment for hepatitis C was associated not only with semen alterations but also with sperm deoxyribonucleic acid fragmentation in humans. Fertil. Steril. 91, e17–e22. (10.1016/j.fertnstert.2008.07.1755) PubMed DOI
Drobnis EZ, Nangia AK. 2017. Antivirals and male reproduction. Adv. Exp. Med. Biol. 1034, 163–178. (10.1007/978-3-319-69535-8_11) PubMed DOI
Bukhari SA, Ahmed MM, Anjum F, Anwar H, Naqvi SAR, Zahra T, Batool U. 2018. Post interferon therapy decreases male fertility through gonadotoxic effect. Pak. J. Pharm. Sci. 31, 1565–1570. PubMed
Thakur V, Jain A. 2020. COVID 2019-suicides: a global psychological pandemic. Brain Behav. Immun. 88, 952–953. (10.1016/j.bbi.2020.04.062) PubMed DOI PMC
Serafini G, Parmigiani B, Amerio A, Aguglia A, Sher L, Amore M. 2020. The psychological impact of COVID-19 on mental health in the general population. QJM 113, 531–537. (10.1093/qjmed/hcaa201) PubMed DOI PMC
Duan L, Zhu G. 2020. Psychological interventions for people affected by the COVID-19 epidemic. Lancet Psychiatry 7, 300–302. (10.1016/S2215-0366(20)30073-0) PubMed DOI PMC
Rooney KL, Domar AD. 2018. The relationship between stress and infertility. Dialogues Clin. Neurosci. 20, 41–47. (10.31887/DCNS.2018.20.1/klrooney) PubMed DOI PMC
Berardis DD, et al. 2014. Psychopathology, emotional aspects and psychological counseling in infertility: a review. Clin. Ter. 165, 163–169. (10.7417/CT.2014.1716) PubMed DOI
Evans-Hoekaer E, et al. 2018. Major depression, antidepressant use, and male and female infertility. Fertil. Steril. 109, 879–887. (10.1016/j.fertnstert.2018.01.029) PubMed DOI PMC
Zou P, et al. 2018. Semen quality in Chinese college students: associations with depression and physical activity in a cross-sectional study. Psychosom. Med. 80, 564–572. (10.1097/PSY.0000000000000595) PubMed DOI
Yehuda R, Lehrner A, Rosenbaum TY. 2015. PTSD and sexual dysfunction in men and women. J. Sex. Med. 12, 1107–1119. (10.1111/jsm.12856) PubMed DOI
Khalili MA, Leisegang K, Majzoub A, Finelli R, Panner Selvam MK, Henkel R, Mojgan M, Agarwal A. 2020. Male infertility and the COVID-19 pandemic: systemic review of the literature. World J. Mens. Health. 38, 506–520. (10.5534/wjmh.200134) PubMed DOI PMC
Adiga SK, Tholeti P, Uppangala S, Kalthur G, Gualtieri R, Talevi R. 2020. Fertility preservation during the COVID-19 pandemic: mitigating the viral contamination risk to reproductive stage in cryostage. Reprod. Biomed. Online 41, 991–997. (10.1016/j.rbmo.2020.09.013) PubMed DOI PMC
Pomeroy KO, Schiewe MC. 2020. Cryopreservation and IVF in the time of Covid-19: what is the best good tissue practice (GTP). J. Assist. Reprod. Genet. 37, 2393–2398. (10.1007/s10815-020-01904-5) PubMed DOI PMC
Paoli D, et al. In press. Sperm cryopreservation during the SARS-CoV-2 pandemic. J. Endocrinol. Invest. PubMed PMC
Onder G, Rezza G, Brusaferro S. 2020. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323, 1775–1776. PubMed
Shim E, Tariq A, Choi W, Lee Y, Chowell G. 2020. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 93, 339–344. (10.1016/j.ijid.2020.03.031) PubMed DOI PMC
Rozenberg S, Vandromme J, Martin C. 2020. Are we equal in adversity? Does COVID-19 affect women and men differently? Maturitas 138, 62–68. (10.1016/j.maturitas.2020.05.009) PubMed DOI PMC
Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT. 2020. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 11, 6317 (10.1038/s41467-020-19741-6) PubMed DOI PMC
Bwire GM 2020. Coronavirus: why men are more vulnerable to COVID-19 than women? SN Compr. Clin. Med. 2, 874–876. PubMed PMC
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. 2020. Single-cell RNA expression profiling of ACE2, the recptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 202, 756–759. (10.1164/rccm.202001-0179LE) PubMed DOI PMC
Patel SK, Velkoska E, Burrell LM. 2013. Emerging markers in cardiovascular disease: where does angiotensin-converting enzyme 2 fit in? Clin. Exp. Pharmacol. Physiol. 40, 551–559. (10.1111/1440-1681.12069) PubMed DOI
Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. 2020. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex. Differ. 11, 29 (10.1186/s13293-020-00304-9) PubMed DOI PMC
Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. (10.1038/nri.2016.90) PubMed DOI
Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. 2017. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J. Immunol. 198, 4046–4053. (10.4049/jimmunol.1601896) PubMed DOI PMC
Elgendy IY, Pepine CJ. 2020. Why are women better protected from COVID-19: clues for men? Sex and COVID-19. Int. J. Cardiol. 315, 105–106. (10.1016/j.ijcard.2020.05.026) PubMed DOI PMC
De la Vega R, Ruiz-Barquin R, Boros S, Szabo A. 2020. Could attitudes towards COVID-19 in Spain render men more vulnerable than women? Glob. Public Health 15, 1278–1291. (10.1080/17441692.2020.1791212) PubMed DOI
Ma X, et al. In press. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell Mol. Immunol. (10.1038/s41423-020-00604-5) PubMed DOI PMC
Fraietta R, Pasqualotto FF, Roque M, Taitson PF. 2020. SARS-CoV-2 and male reproductive health. JBRA Assist. Reprod. 24, 347–350. PubMed PMC
Roychoudhury S, Das A, Sengupta P, Dutta S, Roychoudhury S, Choudhury AP, Ahmed ABF, Bhattacharjee S, Slama P. 2020. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int. J. Environ. Res. Public Health 17, 9411 (10.3390/ijerph17249411) PubMed DOI PMC
Jeyaraman M, et al. 2020. Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochim. Biophys. Acta. Mol. Basis Dis. 1867, 1660 (10.1016/j.bbadis.2020.166014) PubMed DOI PMC
Satyam R, Bhardwaj T, Goel S, Jha NK, Jha SK, Nand P, Ruokolainen J, Kamal MA, Kesari KK. In print. miRNAs in SARS-CoV 2: a spoke in the wheel of pathogenesis. Curr. Pharm. Des. (10.2174/1381612826999201001200529) PubMed DOI
Cattrini C, Bersanelli M, Latocca MM, Conte B, Vallome G, Boccardo F. 2020. Sex hormones and hormone therapy during covid-19 pandemic: Implications for patients with cancer. Cancers 12, 2325 (10.3390/cancers12082325) PubMed DOI PMC
COVID-19, oxidative stress, and male reproductive dysfunctions: is vitamin C a potential remedy?
Is there impact of the SARS-CoV-2 pandemic on steroidogenesis and fertility?