• This record comes from PubMed

Cercarial behaviour alters the consumer functional response of three-spined sticklebacks

. 2021 Apr ; 90 (4) : 978-988. [epub] 20210208

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Free-living parasite life stages may contribute substantially to ecosystem biomass and thus represent a significant source of energy flow when consumed by non-host organisms. However, ambient temperature and the predator's own infection status may modulate consumption rates towards parasite prey. We investigated the combined effects of temperature and predator infection status on the consumer functional response of three-spined sticklebacks towards the free-living cercariae stages of two common freshwater trematode parasites (Plagiorchis spp., Trichobilharzia franki). Our results revealed genera-specific functional responses and consumption rates towards each parasite prey: Type II for Plagiorchis spp. and Type III for T. franki, with an overall higher consumption rate on T. franki. Elevated temperature (13°C) increased the consumption rate on Plagiorchis spp. prey for sticklebacks with mild cestode infections (<5% fish body weight) only. High consumption of cercarial prey by sticklebacks may impact parasite population dynamics by severely reducing or even functionally eliminating free-living parasite life stages from the environment. This supports the potential role of fish as biocontrol agents for cercariae with similar dispersion strategies, in instances where functional response relationships have been established. Our study demonstrates how parasite consumption by non-host organisms may be shaped by traits inherent to parasite transmission and dispersal, and emphasises the need to consider free-living parasite life stages as integral energy resources in aquatic food webs.

See more in PubMed

Amundsen, P.-A., Lafferty, K. D., Knudsen, R., Primicerio, R., Klemetsen, A., & Kuris, A. M. (2009). Food web topology and parasites in the pelagic zone of a subarctic lake. Journal of Animal Ecology, 78, 563-572. https://doi.org/10.1111/j.1365-2656.2008.01518.x

Amundsen, P.-A., Primicerio, R., Smalås, A., Henriksen, E. H., Knudsen, R., Kristoffersen, R., & Klemetsen, A. (2019). Long-term ecological studies in northern lakes-challenges, experiences, and accomplishments. Limnology and Oceanography, 64, S11-S21. https://doi.org/10.1002/lno.10951

Anderson, R. M., Whitfield, P. J., Dobson, A. P., & Keymer, A. E. (1978). Concomitant predation and infection processes, an experimental study. Journal of Animal Ecology, 47, 891-911. https://doi.org/10.2307/3677

Arnott, S. A., Barber, I., & Huntingford, F. A. (2000). Parasite-associated growth enhancement in a fish-cestode system. Proceedings of the Royal Society B: Biological Sciences, 267, 657-663. https://doi.org/10.1098/rspb.2000.1052

Barrios-O'Neill, D., Dick, J. T. A., Emmerson, M. C., Ricciardi, A., & MacIsaac, H. J. (2015). Predator-free space, functional responses and biological invasions. Functional Ecology, 29, 377-384. https://doi.org/10.1111/fwb.12423

Barrios-O'Neill, D., Kelly, R., Dick, J. T. A., Ricciardi, A., MacIsaac, H. J., & Emmerson, M. C. (2016). On the context-dependent scaling of consumer feeding rates. Ecology Letters, 19, 668-678. https://doi.org/10.1111/ele.12605

Barrios-O'Neill, D., Dick, J. T., Ricciardi, A., MacIsaac, H. J., & Emmerson, M. C. (2014). Deep impact: In situ functional responses reveal context-dependent interactions between vertically migrating invasive and native mesopredators and shared prey. Freshwater Biology, 59, 2194-2203. https://doi.org/10.1111/fwb.12423

Born-Torrijos, A., Holzer, A. S., Raga, J. A., & Kostadinova, A. (2014). Same host, same lagoon, different transmission pathways: Effects of exogenous factors on larval emergence in two marine digenean parasites. Parasitology Research, 113, 545-554. https://doi.org/10.1007/s00436-013-3686-7

Born-Torrijos, A., Paterson, R. A., van Beest, G. S., Schwelm, J., Vyhlídalová, T., Henriksen, E. H., Knudsen, R., Kristoffersen, R., Amundsen, P.-A., & Soldánová, M. (2020). Temperature does not influence functional response of amphipods consuming different trematode prey. Parasitology Research, 119, 4271-4276. https://doi.org/10.1007/s00436-020-06859-1

Born-Torrijos, A., Paterson, R. A., van Beest, G. S., Vyhlídalová, T., Henriksen, E. H., Knudsen, R., Kristoffersen, R., Amundsen, P.-A., & Soldánová, M. (2021). Data from: Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. Dryad Digital Repository, https://doi.org/10.5061/dryad.j6q573ncp

Catania, S. V. L., Koprivnikar, J., & McCauley, S. J. (2016). Size-dependent predation alters interactions between parasites and predators. Canadian Journal of Zoology, 94, 631-635. https://doi.org/10.1139/cjz-2016-0088

Combes, C., Fournier, A., Moné, H., & Théron, A. (1994). Behaviours in trematode cercariae that enhance parasite transmission: Patterns and processes. Parasitology, 109, S3-S13. https://doi.org/10.1017/s0031182000085048

Croy, M. I., & Hughes, R. N. (1991). The influence of hunger on feeding behaviour and on the acquisition of learned foraging skills by the fifteen-spined stickleback, Spinachia spinachia L. Animal Behaviour, 41, 161-170. https://doi.org/10.1016/S0003-3472(05)80511-1

Cuthbert, R. N., Dick, J. T. A., Callaghan, A., & Dickey, J. W. E. (2018). Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric. Biological Control, 121, 50-57. https://doi.org/10.1016/j.biocontrol.2018.02.008

Daugaard, U., Petchey, O. L., & Pennekamp, F. (2019). Warming can destabilise predator-prey interactions by shifting the functional response from Type III to Type II. Journal of Animal Ecology, 88, 1575-1586. https://doi.org/10.1111/1365-2656.13053

Dunne, J. A., Lafferty, K. D., Dobson, A. P., Hechinger, R. F., Kuris, A. M., Martinez, N., McLaughlin, J. P., Mouritsen, K. N., Poulin, R., Reise, K., Stouffer, D. B., Thieltges, D. W., Williams, R. J., & Zander, C. D. (2013). Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biology, 11, e1001579. https://doi.org/10.1371/journal.pbio.1001579

Englund, G., Öhlund, G., Hein, C. L., & Diehl, S. (2011). Temperature dependence of the functional response. Ecology Letters, 14, 914-921. https://doi.org/10.1111/j.1461-0248.2011.01661.x

Franke, F., Armitage, S. A., Kutzer, M. A., Kurtz, J., & Scharsack, J. P. (2017). Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association. Parasites & Vectors, 10, 252. https://doi.org/10.1186/s13071-017-2192-7

Goedknegt, A., Welsh, J., & Thieltges, D. W. (2012). Parasites as prey. In J. Wiley & Sons (Eds.), eLS (pp. 7). Chichester.

Griffin, L. F., & Knight, J. M. (2012). A review of the role of fish as biological control agents of disease vector mosquitoes in mangrove forests: Reducing human health risks while reducing environmental risk. Wetlands Ecology and Management, 20, 243-252. https://doi.org/10.1007/s11273-012-9248-4

Heinclová, P. (2018). The effect of direct predation by fish on cercarial populations of selected trematode species (Digenea) (MSc thesis; p. 61). University of South Bohemia.

Heller, R., & Milinski, M. (1979). Optimal foraging of sticklebacks on swarming prey. Animal Behaviour, 27, 1127-1141. https://doi.org/10.1016/0003-3472(79)90061-7

Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91, 385-398. https://doi.org/10.4039/Ent91385-7

Horák, P., Mikeš, L., Lichtenbergová, L., Skála, V., Soldánová, M., & Brant, S. V. (2015). Avian schistosomes and outbreaks of cercarial dermatitis. Clinical Microbiology Reviews, 28, 165-190. https://doi.org/10.1128/CMR.00043-14

Iltis, C., Spataro, T., Wattier, R., & Médoc, V. (2018). Parasitism may alter functional response comparisons: A case study on the killer shrimp Dikerogammarus villosus and two non-invasive gammarids. Biological Invasions, 20, 619-632. https://doi.org/10.1007/s10530-017-1563-5

Jephcott, T. G., Sime-Ngando, T., Gleason, F. H., & Macarthur, D. J. (2016). Host-parasite interactions in food webs: Diversity, stability, and coevolution. Food Webs, 6, 1-8. https://doi.org/10.1016/j.fooweb.2015.12.001

Jeschke, J. M., Kopp, M., & Tollrian, R. (2004). Consumer-food systems: Why type I functional responses are exclusive to filter feeders. Biological Reviews, 79, 337-349. https://doi.org/10.1017/S1464793103006286

Johnson, P. T. J., Dobson, A., Lafferty, K. D., Marcogliese, D., Memmott, J., Orlofske, S. A., Poulin, R., & Thieltges, D. W. (2010). When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends in Ecology & Evolution, 25, 362-371. https://doi.org/10.1016/j.tree.2010.01.005

Jørgensen, L., & Klemetsen, A. (1995). Food resource partitioning of Arctic charr, Salvelinus alpinus (L.) and three-spined stickleback, Gasterosteus aculeatus L., in the littoral zone of lake Takvatn in northern Norway. Ecology of Freshwater Fish, 4, 77-84. https://doi.org/10.1111/j.1600-0633.1995.tb00120.x

Juliano, S. A. (2001). Non-linear curve fitting: Predation and functional response curves. In S. M. Scheiner & J. Gurevitch (Eds.), Design and analysis of ecological experiments (pp. 178-196). Oxford University Press.

Kaplan, A. T., Rebhal, S., Lafferty, K. D., & Kuris, A. M. (2009). Small estuarine fishes feed on large trematode cercariae: Lab and field investigations. Journal of Parasitology, 95, 477-480. https://doi.org/10.1645/GE-1737.1

Klemetsen, A., Amundsen, P.-A., Grotnes, P.-E., Knudsen, R., Kristoffersen, R., & Svenning, M.-A. (2002). Takvatn through 20 years: Long-term effects of an experimental mass removal of Arctic charr Salvelinus alpinus from a subarctic lake. Environmental Biology of Fishes, 64, 39-47. https://doi.org/10.1023/A:1016062421601

Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W., & Fredensborg, B. L. (2012). Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evolutionary Ecology, 26, 1497-1512. https://doi.org/10.1007/s10682-012-9558-2

Kuhn, J. A., Kristoffersen, R., Knudsen, R., Jakobsen, J., Marcogliese, D. J., Locke, S. A., Primicerio, R., & Amundsen, P.-A. (2015). Parasite communities of two three-spined stickleback populations in subarctic Norway-effects of a small spatial-scale host introduction. Parasitology Research, 114, 1327-1339. https://doi.org/10.1007/s00436-015-4309-2

Kuris, A. M., Hechinger, R. F., Shaw, J. C., Whitney, K., Aguirre-Macedo, L., Boch, C., Dobson, A. P., Dunham, E. J., Fredensborg, B. L., Huspeni, T. C., Lorda, J., Mababa, L., Mancini, F. T., Mora, A. B., Pickering, M., Talhouk, N. L., Torchin, M. E., & Lafferty, K. D. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature, 454, 515-518. https://doi.org/10.1038/nature06970

Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T. J., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R., & Thieltges, D. W. (2008). Parasites in food webs: The ultimate missing links. Ecology Letters, 11, 533-546. https://doi.org/10.1111/j.1461-0248.2008.01174.x

Larsen, M. H., Høeg, J. T., & Mouritsen, K. N. (2013). Influence of infection by Sacculina carcini (Cirripedia, Rhizocephala) on consumption rate and prey size selection in the shore crab Carcinus maenas. Journal of Experimental Marine Biology and Ecology, 446, 209-215. https://doi.org/10.1016/j.jembe.2013.05.029

Larsen, M. H., & Mouritsen, K. N. (2009). Increasing temperature counteracts the impact of parasitism on periwinkle consumption. Marine Ecology Progress Series, 383, 141-149. https://doi.org/10.3354/meps08021

Laverty, C., Brenner, D., McIlwaine, C., Lennon, J. J., Dick, J. T. A., Lucy, F. E., & Christian, K. A. (2017). Temperature rise and parasitic infection interact to increase the impact of an invasive species. International Journal for Parasitology, 47, 291-296. https://doi.org/10.1016/j.ijpara.2016.12.004

Leeuwen, E. V., Jansen, V. A. A., & Bright, P. W. (2007). How population dynamics shape the functional response in a one-predator-two-prey system. Ecology, 88, 1571-1581. https://doi.org/10.1890/06-1335

Lowenberger, C. A., & Rau, M. E. (1994). Plagiorchis elegans: Emergence, longevity and infectivity of cercariae, and host behavioural modifications during cercarial emergence. Parasitology, 109, 65-72. https://doi.org/10.1017/S0031182000077775

Marcogliese, D. J., & Cone, D. K. (1997). Food webs: A plea for parasites. Trends in Ecology & Evolution, 12, 320-325. https://doi.org/10.1016/S0169-5347(97)01080-X

Marten, G. G. (1990). Elimination of Aedes albopictus from tire piles by introducing Macrocyclops albidus (Copepoda, Cyclopidae). Journal of the American Mosquito Control Association, 6, 689-693.

McCarthy, A. M. (1999). Photoperiodic cercarial emergence patterns of the digeneans Echinoparyphium recurvatum and Plagiorchis sp. from a mixed infection in Lymnaea peregra. Journal of Helminthology, 73, 59-62. https://doi.org/10.1017/S0022149X99000074

McCarthy, H. O., Fitzpatrick, S., & Irwin, S. W. B. (2002). Life history and life cycles: Production and behavior of trematode cercariae in relation to host exploitation and next-host characteristics. Journal of Parasitology, 88, 910-918. https://doi.org/10.2307/3285530

McKee, K. M., Koprivnikar, J., Johnson, P. T. J., & Arts, M. T. (2020). Parasite infectious stages provide essential fatty acids and lipid-rich resources to freshwater consumers. Oecologia, 192, 477-488. https://doi.org/10.1007/s00442-019-04572-0

Milinski, M. (1985). Risk of predation of parasitized sticklebacks (Gasterosteus aculeatus L.) under competition for food. Behaviour, 93, 203-216. https://doi.org/10.1163/156853986X00883

Mironova, E., Gopko, M., Pasternak, A., Mikheev, V., & Taskinen, J. T. (2019). Trematode cercariae as prey for zooplankton: Effect on fitness traits of predators. Parasitology, 146, 105-111. https://doi.org/10.1017/S0031182018000963

Mironova, E., Gopko, M., Pasternak, A., Mikheev, V., & Taskinen, J. T. (2020). Cyclopoids feed selectively on free-living stages of parasites. Freshwater Biology, 65, 1450-1459. https://doi.org/10.1111/fwb.13512

Morley, N. J. (2012). Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia, 691, 7-19. https://doi.org/10.1007/s10750-012-1029-9

O'Shaughnessy, K. A., Harding, J. M., & Burge, E. J. (2014). Ecological effects of the invasive parasite Loxothylacus panopaei on the flatback mud crab Eurypanopeus depressus with implications for estuarine communities. Bulletin of Marine Science, 90, 611-621. https://doi.org/10.5343/bms.2013.1060

Orlofske, S. A., Jadin, R. C., & Johnson, P. T. J. (2015). It’s a predator-eat-parasite world: How characteristics of predator, parasite and environment affect consumption. Oecologia, 178, 537-547. https://doi.org/10.1007/s00442-015-3243-4

Orlofske, S. A., Jadin, R. C., Preston, D. L., & Johnson, P. T. J. (2012). Parasite transmission in complex communities: Predators and alternative hosts alter pathogenic infections in amphibians. Ecology, 93, 1247-1253. https://doi.org/10.1890/11-1901.1

Paterson, R. A., Dick, J. T. A., Pritchard, D. W., Ennis, M., Hatcher, M. J., & Dunn, A. M. (2015). Predicting invasive species impacts: A community module functional response approach reveals context dependencies. Journal of Animal Ecology, 84, 453-463. https://doi.org/10.1111/1365-2656.12292

Pietrock, M., & Marcogliese, D. J. (2003). Free-living endohelminth stages: At the mercy of environmental conditions. Trends in Parasitology, 19, 293-299. https://doi.org/10.1016/S1471-4922(03)00117-X

Poulin, R. (2006). Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology, 132, 143-151. https://doi.org/10.1017/S0031182005008693

Poulin, R., & Morand, S. (2004). Parasite biodiversity (pp. 216). Smithsonian Institution Books.

Preston, D. L., Orlofske, S. A., Lambden, J. P., & Johnson, P. T. J. (2013). Biomass and productivity of trematode parasites in pond ecosystems. Journal of Animal Ecology, 82, 509-517. https://doi.org/10.1111/1365-2656.12030

Pritchard, D. W., Paterson, R. A., Bovy, H. C., & Barrios-O'Neill, D. (2017). frair: An R package for fitting and comparing consumer functional responses. Methods in Ecology and Evolution, 8, 1528-1534. https://doi.org/10.1111/2041-210X.12784

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Scharsack, J. P., Franke, F., Erin, N. I., Kuske, A., Büscher, J., Stolz, H., Samonte, I. E., Kurtz, J., & Kalbe, M. (2016). Effects of environmental variation on host-parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus). Zoology, 119, 375-383. https://doi.org/10.1016/j.zool.2016.05.008

Selbach, C., Rosenkranz, M., & Poulin, R. (2019). Cercarial behavior determines risk of predation. Journal of Parasitology, 105, 330-333. https://doi.org/10.1645/18-165

Siau, Y., Marchand, B., Sene, M., & Mbow, A. (1992). Cercariae-eating fish for biocontrol of bilharziasis. Annales des Sciences Naturelles-Zoologie et Biologie Animale, 13, 53-57.

Soldánová, M., Georgieva, S., Roháčová, J., Knudsen, R., Kuhn, J. A., Henriksen, E. H., Siwertsson, A., Shaw, J. C., Kuris, A. M., Amundsen, P.-A., Scholz, T., Lafferty, K. D., & Kostadinova, A. (2017). Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. International Journal for Parasitology, 47, 327-345. https://doi.org/10.1016/j.ijpara.2016.12.008

Soldánová, M., Selbach, C., Kalbe, M., Kostadinova, A., & Sures, B. (2013). Swimmer’s itch: Etiology, impact, and risk factors in Europe. Trends in Parasitology, 29, 65-74. https://doi.org/10.1016/j.pt.2012.12.002

Soldánová, M., Selbach, C., & Sures, B. (2016). The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE, 11, e0149678. https://doi.org/10.1371/journal.pone.0149678

Thieltges, D. W., Amundsen, P.-A., Hechinger, R. F., Johnson, P. T. J., Lafferty, K. D., Mouritsen, K. N., Preston, D. L., Reise, K., Zander, C. D., & Poulin, R. (2013). Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos, 122, 1473-1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x

Thieltges, D. W., Jensen, K. T., & Poulin, R. (2008). The role biotic factors in the transmission of free-living endohelminth stages. Parasitology, 135, 407-426. https://doi.org/10.1017/S0031182007000248

Thieltges, D. W., & Reise, K. (2007). Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia, 150, 569-581. https://doi.org/10.1007/s00442-006-0557-2

Tierney, J. F., Huntingford, F. A., & Crompton, D. W. T. (1993). The relationship between infectivity of Schistocephalus solidus (Cestoda) and the antipredator behaviour of its intermediate host, the three-spined stickleback, Gasterosteus aculeatus. Animal Behaviour, 46, 603-605. https://doi.org/10.1006/anbe.1993.1229

Toscano, B. J., Newsome, B., & Griffen, B. D. (2014). Parasite modification of predator functional response. Oecologia, 175, 345-352. https://doi.org/10.1007/s00442-014-2905-y

Uszko, W., Diehl, S., Englund, G., & Amarasekare, P. (2017). Effects of warming on predator-prey interactions - A resource-based approach and a theoretical synthesis. Ecology Letters, 20, 513-523. https://doi.org/10.1111/ele.12755

Waeschenbach, A., Brabec, J., Scholz, T., Littlewood, D. T. J., & Kuchta, R. (2017). The catholic taste of broad tapeworms - Multiple routes to human infection. International Journal for Parasitology, 47, 831-843. https://doi.org/10.1016/j.ijpara.2017.06.004

Wasserman, R. J., Alexander, M. E., Weyl, O. L., Barrios-O'Neill, D., Froneman, P. W., & Dalu, T. (2016). Emergent effects of structural complexity and temperature on predator-prey interactions. Ecosphere, 7, e01239. https://doi.org/10.1002/ecs2.1239

Welsh, J. E., Hempel, A., Markovic, M., van der Meer, J., & Thieltges, D. W. (2019). Consumer and host body size effects on the removal of trematode cercariae by ambient communities. Parasitology, 146, 342-347. https://doi.org/10.1017/S0031182018001488

Welsh, J. E., Liddell, C., van der Meer, J., & Thieltges, D. W. (2017). Parasites as prey: The effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology, 144, 1775-1782. https://doi.org/10.1017/S0031182017001056

Welsh, J. E., van der Meer, J., Brussaard, C. P. D., & Thieltges, D. W. (2014). Inventory of organisms interfering with transmission of a marine trematode. Journal of the Marine Biological Association of the United Kingdom, 94, 697-702. https://doi.org/10.1017/S0025315414000034

Wootton, R. J., Allen, J. R. M., & Cole, S. J. (1980). Effect of body weight and temperature on the maximum daily food consumption of Gasterosteus aculeatus L. and Phoxinus phoxinus (L.): Selecting an appropriate model. Journal of Fish Biology, 17, 695-705. https://doi.org/10.1111/j.1095-8649.1980.tb02803.x

Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M., & Kostadinova, A. (2014). Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Systematic Parasitology, 88, 37-54. https://doi.org/10.1007/s11230-014-9481-8

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...