• This record comes from PubMed

Vitamin D and new insights into pathophysiology of type 2 diabetes

. 2021 Mar 01 ; 42 (2) : 203-208. [epub] 20210301

Language English Country Germany Media electronic

Document type Journal Article, Review

Deficiency in vitamin D plays a role in the onset and development of insulin resistance (IR) and type 2 diabetes (T2DM). A normal level of vitamin D is able to reduce low grade inflammation, which is a major process in inducing insulin resistance. It is also engaged in maintaining low resting levels of reactive species and radicals, normal Ca2+ signaling, a low expression of pro-inflammatory cytokines but increased formation of anti-inflammatory cytokines. Vitamin D is also able to prevent hypermethylation (of DNA) and consequent functional inactivation of many genes, as well as other epigenetic alterations in β cells and in other insulin-sensitive peripheral tissues, mainly liver, adipose tissue and muscle. Vitamin D deficiency thus belongs to key factors accelerating the development of IR and consequently T2DM as well. However, vitamin D supplementation aimed at the control of glucose homeostasis in humans showed controversial effects. As a result, further studies are running to gain more detailed data needed for the full clinical utilization of vitamin D supplementation in the prevention and treatment of T2DM. Until new results are published, supplementation with high doses of vitamin D deficiency is not recommended. However, prevention of vitamin D deficiency and its correction are highly desired.

See more in PubMed

Ramasamy, I. Vitamin D metabolism and guidelines for vitamin D supplementation. Clin Biochem Rev 2020;41:103–26. https://doi.org/10.33176/aacb-20-00006.

El-Sharkawy, A, Malki, A. Vitamin D signaling in inflammation and cancer: molecular mechanisms and therapeutic implications. Molecules 2020;25:3219. https://doi.org/10.3390/molecules25143219.

Gilani, S, Janssen, P. Maternal vitamin D levels during pregnancy and their effects on maternal-fetal outcomes: a systematic review. J Obstet Gynaecol Can 2020;42:1129–37. https://doi.org/10.1016/j.jogc.2019.09.013.

Charoenngam, N, Holick, MF. Immunologic effects of vitamin D on human health and disease. Nutrients 2020;12:2097. https://doi.org/10.3390/nu12072097.

Jeon, SM, Shin, EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med 2018;50:20. https://doi.org/10.1038/s12276-018-0038-9.

Han, B, Wang, X, Wang, N, Li, Q, Chen, Y, Zhu, C, et al.. Investigation of vitamin D status and its correlation with insulin resistance in a Chinese population. Publ Health Nutr 2017;20:1602–8. https://doi.org/10.1017/s1368980017000490.

Nur-Eke, R, Ozen, M, Cekin, AH. Pre-diabetics with hypovitaminosis D have higher risk for insulin resistance. Clin Lab 2019;65. https://doi.org/10.7754/clin.lab.2018.181014.

Lips, P, Eekhoff, M, van Schoor, N, Oosterwerff, M, de Jongh, R, Krul-Poel, Y, et al.. Vitamin D and type 2 diabetes. J Steroid Biochem Mol Biol 2017;173:280–5. https://doi.org/10.1016/j.jsbmb.2016.11.021.

Kim, H, Lee, H, Yim, HW, Kim, HS. Association of serum 25-hydroxy vitamin D and diabetes-related factors in Korean adults without diabetes. The Fifth Korea National Health and Nutrition Examination Survey 2010–2012. Prim Care Diabetes 2018;12:59–65. https://doi.org/10.1016/j.pcd.2017.07.002.

Wimalawansa, SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol 2018;175:177–89. https://doi.org/10.1016/j.jsbmb.2016.09.017.

Malden, S, Gillespie, J, Hughes, A, Gibson, AM, Farooq, A, Martin, A, et al.. Obesity in young children and its relationship with diagnosis of asthma, vitamin D deficiency, iron deficiency, specific allergies and flat-footedness: a systematic review and meta-analysis. Obes Rev 2020 Aug 18. [Ahead of print].

Hajhashemy, Z, Shahdadian, F, Ziaei, R, Saneei, P. Serum vitamin D levels in relation to abdominal obesity: a systematic review and dose-response meta-analysis of epidemiologic studies. Obes Rev 2021;22:e13134. https://doi.org/10.1111/obr.13134.

Maroufi, NF, Pezeshgi, P, Mortezania, Z, Pourmohammad, P, Eftekhari, R, Moradzadeh, M, et al.. Association between vitamin D deficiency and prevalence of metabolic syndrome in female population: a systematic review. Horm Mol Biol Clin Invest 2020 Sep 28. [Ahead of print].

Li, YX, Zhou, L. Vitamin D deficiency, obesity and diabetes. Cell Mol Biol (Noisy-Le-Grand) 2015;61:35–8.

Berridge, MJ. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol 2017;595:6825–36. https://doi.org/10.1113/jp274887.

Berridge, MJ. Vitamin D deficiency and diabetes. Biochem J 2017;474:1321–32. https://doi.org/10.1042/bcj20170042.

Szymczak-Pajor, I, Śliwińska, A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients 2019;11:794. https://doi.org/10.3390/nu11040794.

Grammatiki, M, Karras, S, Kotsa, K. The role of vitamin D in the pathogenesis and treatment of diabetes mellitus: a narrative review. Hormones (Athens) 2019;18:37–48. https://doi.org/10.1007/s42000-018-0063-z.

Garbossa, SG, Folli, F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev Endocr Metab Disord 2017;18:243–58. https://doi.org/10.1007/s11154-017-9423-2.

Sacerdote, A, Dave, P, Lokshi, V, Bahtiyar, G. Type 2 diabetes mellitus, insulin resistance, and vitamin D. Curr Diabetes Rep 2019;19:101. https://doi.org/10.1007/s11892-019-1201-y.

Bouillon, R, Verstuyf, A, Mathieu, C, Van Cromphaut, S, Masuyama, R, Dehaes, P, et al.. Vitamin D resistance. Best Pract Res Clin Endocrinol Metabol 2006;20:627–45. https://doi.org/10.1016/j.beem.2006.09.008.

Wang, Y, Zhu, J, Deluca, HF. Where is the vitamin D receptor? Arch Biochem Biophys 2012;523:123–33. https://doi.org/10.1016/j.abb.2012.04.001.

Christakos, S, Dhawan, P, Verstuyf, A, Verlinden, L, Carmeliet, G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016;96:365–408. https://doi.org/10.1152/physrev.00014.2015.

Pike, JW, Meyer, MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxy vitamin D3. Endocrinol Metab Clin N Am 2010;39:255–69. https://doi.org/10.1016/j.ecl.2010.02.007.

Pike, JW, Meyer, MB, Benkusky, NA, Lee, SM, St John, H, Carlson, A, et al.. Genomic determinants of vitamin D-regulated gene expression. Vitam Horm 2016;100:21–44. https://doi.org/10.1016/bs.vh.2015.10.011.

Doroudi, M, Schwartz, Z, Boyan, BD. Membrane-mediated actions of 1,25-dihydroxy vitamin D3: a review of the roles of phospholipase A2 activating protein and Ca(2+)/calmodulin-dependent protein kinase II. J Steroid Biochem Mol Biol 2015;147:81–4. https://doi.org/10.1016/j.jsbmb.2014.11.002.

Hii, CS, Ferrante, A. The non-genomic actions of vitamin D. Nutrients 2016;8:135. https://doi.org/10.3390/nu8030135.

Muñoz-Garach, A, García-Fontana, B, Muñoz-Torres, M. Vitamin D status, calcium intake and risk of developing type 2 diabetes: an unresolved issue review. Nutrients 2019;11:642. https://doi.org/10.3390/nu11030642.

Rutter, GA, Hodson, DJ, Chabosseau, P, Haythorne, E, Pullen, TJ, Leclerc, I. Local and regional control of calcium dynamics in the pancreatic islet. Diabetes Obes Metabol 2017;19:30–41. https://doi.org/10.1111/dom.12990.

Schwaller, B. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2010;2:a004051. https://doi.org/10.1101/cshperspect.a004051.

Jassil, NK, Sharma, A, Bikle, D, Wang, X. Vitamin D binding protein and 25-hydroxy vitamin D levels: emerging clinical applications. Endocr Pract 2017;23:605–13. https://doi.org/10.4158/ep161604.ra.

Taylor, WH, Khaleeli, AA. Coincident diabetes mellitus and primary hyperparathyroidism. Diabetes Metab Res Rev 2001;17:175–80. https://doi.org/10.1002/dmrr.199.

Nakamura, MT, Yudell, BE, Loor, JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014;53:124–44. https://doi.org/10.1016/j.plipres.2013.12.001.

Park, S, Kim, DS, Kang, S. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese type 2 diabetic rats. J Nutr Biochem 2016;27:257–65. https://doi.org/10.1016/j.jnutbio.2015.09.013.

Neelankal, JA, Jiang, FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabet Complicat 2018;32:429–43.

Marino, R, Misra, M. Extra-skeletal effects of vitamin D. Nutrients 2019;11:1460. https://doi.org/10.3390/nu11071460.

Berridge, MJ. Vitamin D. Reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2016;371:20150434. https://doi.org/10.1098/rstb.2015.0434.

Jain, SK, Micinski, D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases reactive species and radicals and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 2013;437:7–11. https://doi.org/10.1016/j.bbrc.2013.06.004.

Jain, SK, Parsanathan, R, Achari, AE, Kanikarla-Marie, P, Bocchini, JAJr. Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood: a novel approach to treat 25-hydroxyvitamin D deficiency. Antioxidants Redox Signal 2018;29:1792–807. https://doi.org/10.1089/ars.2017.7462.

Tagliaferri, S, Porri, D, De Giuseppe, R, Manuelli, M, Alessio, F, Cena, H. The controversial role of vitamin D as an antioxidant: results from randomised controlled trials. Nutr Res Rev 2019;32:99–105. https://doi.org/10.1017/s0954422418000197.

Ravid, A, Koren, R. The role of reactive oxygen species in the anticancer activity of vitamin D. Recent Results Canc Res 2003;164:357–67. https://doi.org/10.1007/978-3-642-55580-0_26.

Gonçalves de Carvalho, CM, Ribeiro, SM. Aging, low-grade systemic inflammation and vitamin D: a mini-review. Eur J Clin Nutr 2017;71:434–40. https://doi.org/10.1038/ejcn.2016.177.

Mousa, A, Naderpoor, N, Teede, H, Scragg, R, de Courten, B. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2018;76:380–94. https://doi.org/10.1093/nutrit/nux077.

Picca, A, Guerra, F, Calvani, R, Bucci, C, Lo Monaco, MR, Bentivoglio, AR, et al.. Mitochondrial dysfunction and aging: insights from the analysis of extracellular vesicles. Int J Mol Sci 2019;20:805. https://doi.org/10.3390/ijms20040805.

Kang, S, Tsai, LT, Zhou, Y, Evertts, A, Xu, S, Griffin, MJ, et al.. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol 2015;17:44–56. https://doi.org/10.1038/ncb3080.

Ong, LTC, Booth, DR, Parnell, GP. Vitamin D and its effects on DNA methylation in development, aging, and disease. Mol Nutr Food Res 2020;20:e2000437.

Seida, J, Mitri, J, Colmers, IN, Majumdar, SR, Davidson, MB, Edwards, AL, et al.. Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab 2014;99:3551–60. https://doi.org/10.1210/jc.2014-2136.

Krul-Poel, YH, Ter Wee, MM, Lips, P, Simsek, S. Management of endocrine disease: the effect of vitamin D supplementation on glycaemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Eur J Endocrinol 2017;176:R1–14. https://doi.org/10.1530/eje-16-0391.

Wallace, IR, Wallace, HJ, McKinley, MC, Bell, PM, Hunter, SJ. Vitamin D and insulin resistance. Clin Endocrinol (Oxf) 2016;84:159–71. https://doi.org/10.1111/cen.12760.

Maddaloni, E, Cavallari, I, Napoli, N, Conte, C. Vitamin D and diabetes mellitus. Front Horm Res 2018;50:161–76. https://doi.org/10.1159/000486083.

Angellotti, E, Pittas, AG. The role of vitamin D in the prevention of type 2 diabetes: to do or not to do? Endocrinology 2017;158:2013–21. https://doi.org/10.1210/en.2017-00265.

Santos, RKF, Brandao-Lima, PN, Tete, RMDD, Freire, ARS, Pires, LV. Vitamin D ratio and glycaemic control in individuals with type 2 diabetes mellitus: a systematic review. Diabetes Metab Res Rev 2018;34. https://doi.org/10.1002/dmrr.2969.

Rajput, R, Vohra, S, Nanda, S, Rajput, M. Severe 25(OH) vitamin-D deficiency: a risk factor for development of gestational diabetes mellitus. Diabetes Metab Syndr 2019;13:985–7. https://doi.org/10.1016/j.dsx.2019.01.004.

George, PS, Pearson, ER, Witham, MD. Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and metaanalysis. Diabet Med 2012;29:e142–50. https://doi.org/10.1111/j.1464-5491.2012.03672.x.

He, S, Yu, S, Zhou, Z, Wang, C, Wu, Y, Li, W. Effect of vitamin D supplementation on fasting plasma glucose, insulin resistance and prevention of type 2 diabetes mellitus in non-diabetics: a systematic review and meta-analysis. Biomed Rep 2018;8:475–84. https://doi.org/10.3892/br.2018.1074.

Zhang, Y, Tan, H, Tang, J, Li, J, Chong, W, Hai, Y, et al.. Effect of vitamin D supplementation on prevention of type 2 diabetes in patients with prediabetes. A systematic review and meta-analysis. Diabetes Care 2020;43:1650–8. https://doi.org/10.2337/dc19-1708.

Pramono, A, Jocken, JWE, Blaak, EE. Vitamin D deficiency in the aetiology of obesity-related insulin resistance. Diabetes Metab Res Rev 2019;35:e3146. https://doi.org/10.1002/dmrr.3146.

Greco, EA, Lenzi, A, Migliaccio, S. Role of hypovitaminosis in the pathogenesis of obesity-induced insulin resistance. Nutrients 2019;117:1506. https://doi.org/10.3390/nu11071506.

Hypponen, E, Boucher, BJ. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities. Nutr Rev 2018;76:678–92. https://doi.org/10.1093/nutrit/nuy034.

Leung, PS. The potential protective action of vitamin D in hepatic insulin resistance and pancreatic islet dysfunction in type 2 diabetes mellitus. Nutrients 2016;8:147. https://doi.org/10.3390/nu8030147.

Hosny, SS, Ali, HM, Mohammed, WA, El Ghannam, MH. Study of relationship between total vitamin D level and NAFLD in a sample of Egyptian patients with and without T2DM. Diabetes Metab Syndr 2019;13:1769–71. https://doi.org/10.1016/j.dsx.2019.04.002.

Mackawy, AM, Badawi, ME. Association of vitamin D and vitamin D receptor gene polymorphism with chronic inflammation, insulin resistance and metabolic syndrome components in type 2 diabetic Egyptian patients. Meta Gene 2014;2:540–56. https://doi.org/10.1016/j.mgene.2014.07.002.

Fei, Y, Ling, LC, Xing, L, Chong, JW, Yue, B, Ling, W, et al.. The genetic polymorphisms in vitamin D receptor and the risk of type 2 diabetes mellitus: an updated meta-analysis. Review. Asia Pac J Clin Nutr 2016;25:614–24. https://doi.org/10.6133/apjcn.092015.12.

Newest 20 citations...

See more in
Medvik | PubMed

Endocrine risk factors for COVID-19 in context of aging

. 2021 Dec 16 ; 70 (S2) : S153-S159.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...