A Deadly Cargo: Gene Repertoire of Cytotoxic Effector Proteins in the Camelidae
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
P 24706
Austrian Science Fund FWF - Austria
P 29623
Austrian Science Fund FWF - Austria
PubMed
33669939
PubMed Central
PMC7924851
DOI
10.3390/genes12020304
PII: genes12020304
Knihovny.cz E-resources
- Keywords
- NK cells, camel, cytotoxic T lymphocytes, granulysin, granzymes, perforin, ungulates,
- MeSH
- Killer Cells, Natural metabolism MeSH
- Pore Forming Cytotoxic Proteins genetics MeSH
- T-Lymphocytes, Cytotoxic metabolism MeSH
- Phylogeny MeSH
- Granzymes genetics MeSH
- Perforin genetics MeSH
- Camelidae classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pore Forming Cytotoxic Proteins MeSH
- Granzymes MeSH
- Perforin MeSH
Cytotoxic T cells and natural killer cells can kill target cells based on their expression and release of perforin, granulysin, and granzymes. Genes encoding these molecules have been only poorly annotated in camelids. Based on bioinformatic analyses of genomic resources, sequences corresponding to perforin, granulysin, and granzymes were identified in genomes of camelids and related ungulate species, and annotation of the corresponding genes was performed. A phylogenetic tree was constructed to study evolutionary relationships between the species analyzed. Re-sequencing of all genes in a panel of 10 dromedaries and 10 domestic Bactrian camels allowed analyzing their individual genetic polymorphisms. The data showed that all extant Old World camelids possess functional genes for two pore-forming proteins (PRF1, GNLY) and six granzymes (GZMA, GZMB, GZMH, GZMK, GZMM, and GZMO). All these genes were represented as single copies in the genome except the GZMH gene exhibiting interspecific differences in the number of loci. High protein sequence similarities with other camelid and ungulate species were observed for GZMK and GZMM. The protein variability in dromedaries and Bactrian camels was rather low, except for GNLY and chymotrypsin-like granzymes (GZMB, GZMH).
CEITEC VFU University of Veterinary Sciences Brno 612 42 Brno Czech Republic
Department of Animal Genetics Veterinary and Pharmaceutical University 612 42 Brno Czech Republic
See more in PubMed
Simon A.K., Hollander G.A., McMichael A.J. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B Biol. Sci. 2015;282 doi: 10.1098/rspb.2014.3085. PubMed DOI PMC
Grossman W.J., Revell P.A., Lu Z.H., Johnson H., Bredemeyer A.J., Ley T.J. The orphan granzymes of humans and mice. Curr. Opin. Immunol. 2003;15:544–552. doi: 10.1016/S0952-7915(03)00099-2. PubMed DOI
Podack E.R., Young J.D., Cohn Z.A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc. Natl. Acad. Sci. USA. 1985;82:8629–8633. doi: 10.1073/pnas.82.24.8629. PubMed DOI PMC
Peña S.V., Krensky A.M. Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin. Immunol. 1997;9:117–125. doi: 10.1006/smim.1997.0061. PubMed DOI
Broek M.F.V.D., Hengartner H. The role of perforin in infections and tumour surveillance. Exp. Physiol. 2000;85:681–685. doi: 10.1017/S0958067000020972. PubMed DOI
Stinchcombe J.C., Griffiths G.M. Secretory Mechanisms in Cell-Mediated Cytotoxicity. Annu. Rev. Cell Dev. Biol. 2007;23:495–517. doi: 10.1146/annurev.cellbio.23.090506.123521. PubMed DOI
Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015;15:388–400. doi: 10.1038/nri3839. PubMed DOI
Susanto O., Stewart S.E., Voskoboinik I., Brasacchio D., Hagn M., Ellis S., Asquith S., Sedelies K.A., Bird P.I., Waterhouse N.J., et al. Mouse granzyme A induces a novel death with writhing morphology that is mechanistically distinct from granzyme B-induced apoptosis. Cell Death Differ. 2013;20:1183–1193. doi: 10.1038/cdd.2013.59. PubMed DOI PMC
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol. Rev. 2010;235:128–146. doi: 10.1111/j.0105-2896.2010.00909.x. PubMed DOI
Martinvalet D., Dykxhoorn D.M., Ferrini R., Lieberman J. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death. Cell. 2008;133:681–692. doi: 10.1016/j.cell.2008.03.032. PubMed DOI PMC
Dotiwala F., Lieberman J. Granulysin: Killer lymphocyte safeguard against microbes. Curr. Opin. Immunol. 2019;60:19–29. doi: 10.1016/j.coi.2019.04.013. PubMed DOI PMC
Dotiwala F., Santara S.S., Binker-Cosen A.A., Li B., Chandrasekaran S., Lieberman J. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program. Cell. 2017;171:1125–1137.e11. doi: 10.1016/j.cell.2017.10.004. PubMed DOI PMC
Voskoboinik I., Dunstone M.A., Baran K., Whisstock J.C., Trapani J.A. Perforin: Structure, function, and role in human immunopathology. Immunol. Rev. 2010;235:35–54. doi: 10.1111/j.0105-2896.2010.00896.x. PubMed DOI
Ohta T., Koshi K., Ushizawa K., Hosoe M., Takahashi T., Yamaguchi T., Kizaki K., Hashizume K. Expression profiles of perforin, granzyme B and granulysin genes during the estrous cycle and gestation in the bovine endometrium. Anim. Sci. J. 2014;85:763–769. doi: 10.1111/asj.12209. PubMed DOI
Endsley J.J., Furrer J.L., Endsley M.A., McIntosh M.A., Maue A.C., Waters W.R., Lee D.R., Estes D.M. Characterization of bovine homologues of granulysin and NK-lysin. J. Immunol. 2004;173:2607–2614. doi: 10.4049/jimmunol.173.4.2607. PubMed DOI
Chen J., Huddleston J., Buckley R.M., Malig M., Lawhon S.D., Skow L.C., Lee M.O., Eichler E.E., Andersson L., Womack J.E. Bovine NK-lysin: Copy number variation and functional diversification. Proc. Natl. Acad. Sci. USA. 2015;112:E7223–E7229. doi: 10.1073/pnas.1519374113. PubMed DOI PMC
Yang J., Vrettou C., Connelley T., Morrison W.I. Identification and annotation of bovine granzyme genes reveals a novel granzyme encoded within the trypsin-like locus. Immunogenetics. 2018;70:585–597. doi: 10.1007/s00251-018-1062-6. PubMed DOI PMC
NCBI’s RefSeq Database. [(accessed on 30 December 2020)]; Available online: http://www.ncbi.nlm.nih.gov/RefSeq/
Resources Genbank. [(accessed on 30 December 2020)]; Available online: http://www.ncbi.nlm.nih.gov/genbank/
De Volo S.B., Reynolds R.T., Douglas M.R., Antolin M.F. An improved extraction method to increase DNA yield from molted feathers. Condor. 2008;110:762–766. doi: 10.1525/cond.2008.8586. DOI
BLAST—Basic Local Alignment Search Tool. [(accessed on 30 December 2020)]; Available online: http://blast.ncbi.nlm.nih.gov/Blast.cgi.
SPLIGN. [(accessed on 30 December 2020)]; Available online: https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi?textpage=online&level=form.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Primer-BLAST. [(accessed on 30 December 2020)]; Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/
FastQC. [(accessed on 30 December 2020)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–2851. doi: 10.1093/bioinformatics/btu356. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Depristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., Del Angel G., Rivas M.A., Hanna M., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC
Picard Tools. [(accessed on 30 December 2020)]; Available online: http://broadinstitute.github.io/picard/
Breese M.R., Liu Y. NGSUtils: A software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29:494–496. doi: 10.1093/bioinformatics/bts731. PubMed DOI PMC
BBMap—Short Read Aligner. [(accessed on 30 December 2020)]; Available online: https://sourceforge.net/projects/bbmap/
Robinson J.T., Thorvaldsdóttir H., Wenger A.M., Zehir A., Mesirov J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–e34. doi: 10.1158/0008-5472.CAN-17-0337. PubMed DOI PMC
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999;41:95–98.
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI
Stephens M., Donnelly P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. Am. J. Hum. Genet. 2003;73:1162–1169. doi: 10.1086/379378. PubMed DOI PMC
Ciccarese S., Burger P.A., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front. Genet. 2019;10:997. doi: 10.3389/fgene.2019.00997. PubMed DOI PMC
Alkan C., Sajjadian S., Eichler E.E. Limitations of next-generation genome sequence assembly. Nat. Methods. 2010;8:61–65. doi: 10.1038/nmeth.1527. PubMed DOI PMC
Ming L., Wang Z., Yi L., Batmunkh M., Liu T., Siren D., He J., Juramt N., Jambl T., Li Y., et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 2020;20:770–780. doi: 10.1111/1755-0998.13141. PubMed DOI
Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC
Richardson M.F., Munyard K., Croft L.J., Allnutt T.R., Jackling F., Alshanbari F., Jevit M., Wright G.A., Cransberg R., Tibary A., et al. Chromosome-Level Alpaca Reference Genome VicPac3.1 Improves Genomic Insight into the Biology of New World Camelids. Front. Genet. 2019;10:586. doi: 10.3389/fgene.2019.00586. PubMed DOI PMC
Hussen J., Shawaf T., Al-Herz A.I., Alturaifi H.R., Alluwaimi A.M. Reactivity of commercially available monoclonal antibodies to human CD antigens with peripheral blood leucocytes of dromedary camels (Camelus dromedarius) Open Veter. J. 2017;7:150–153. doi: 10.4314/ovj.v7i2.12. PubMed DOI PMC
Muyldermans S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013;82:775–797. doi: 10.1146/annurev-biochem-063011-092449. PubMed DOI
Lado S., Elbers J.P., Rogers M.F., Melo-Ferreira J., Yadamsuren A., Corander J., Horin P., Burger P.A. Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genom. 2020;21:1–17. doi: 10.1186/s12864-020-06990-4. PubMed DOI PMC