• This record comes from PubMed

A Deadly Cargo: Gene Repertoire of Cytotoxic Effector Proteins in the Camelidae

. 2021 Feb 21 ; 12 (2) : . [epub] 20210221

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
P 24706 Austrian Science Fund FWF - Austria
P 29623 Austrian Science Fund FWF - Austria

Cytotoxic T cells and natural killer cells can kill target cells based on their expression and release of perforin, granulysin, and granzymes. Genes encoding these molecules have been only poorly annotated in camelids. Based on bioinformatic analyses of genomic resources, sequences corresponding to perforin, granulysin, and granzymes were identified in genomes of camelids and related ungulate species, and annotation of the corresponding genes was performed. A phylogenetic tree was constructed to study evolutionary relationships between the species analyzed. Re-sequencing of all genes in a panel of 10 dromedaries and 10 domestic Bactrian camels allowed analyzing their individual genetic polymorphisms. The data showed that all extant Old World camelids possess functional genes for two pore-forming proteins (PRF1, GNLY) and six granzymes (GZMA, GZMB, GZMH, GZMK, GZMM, and GZMO). All these genes were represented as single copies in the genome except the GZMH gene exhibiting interspecific differences in the number of loci. High protein sequence similarities with other camelid and ungulate species were observed for GZMK and GZMM. The protein variability in dromedaries and Bactrian camels was rather low, except for GNLY and chymotrypsin-like granzymes (GZMB, GZMH).

See more in PubMed

Simon A.K., Hollander G.A., McMichael A.J. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B Biol. Sci. 2015;282 doi: 10.1098/rspb.2014.3085. PubMed DOI PMC

Grossman W.J., Revell P.A., Lu Z.H., Johnson H., Bredemeyer A.J., Ley T.J. The orphan granzymes of humans and mice. Curr. Opin. Immunol. 2003;15:544–552. doi: 10.1016/S0952-7915(03)00099-2. PubMed DOI

Podack E.R., Young J.D., Cohn Z.A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc. Natl. Acad. Sci. USA. 1985;82:8629–8633. doi: 10.1073/pnas.82.24.8629. PubMed DOI PMC

Peña S.V., Krensky A.M. Granulysin, a new human cytolytic granule-associated protein with possible involvement in cell-mediated cytotoxicity. Semin. Immunol. 1997;9:117–125. doi: 10.1006/smim.1997.0061. PubMed DOI

Broek M.F.V.D., Hengartner H. The role of perforin in infections and tumour surveillance. Exp. Physiol. 2000;85:681–685. doi: 10.1017/S0958067000020972. PubMed DOI

Stinchcombe J.C., Griffiths G.M. Secretory Mechanisms in Cell-Mediated Cytotoxicity. Annu. Rev. Cell Dev. Biol. 2007;23:495–517. doi: 10.1146/annurev.cellbio.23.090506.123521. PubMed DOI

Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015;15:388–400. doi: 10.1038/nri3839. PubMed DOI

Susanto O., Stewart S.E., Voskoboinik I., Brasacchio D., Hagn M., Ellis S., Asquith S., Sedelies K.A., Bird P.I., Waterhouse N.J., et al. Mouse granzyme A induces a novel death with writhing morphology that is mechanistically distinct from granzyme B-induced apoptosis. Cell Death Differ. 2013;20:1183–1193. doi: 10.1038/cdd.2013.59. PubMed DOI PMC

Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol. Rev. 2010;235:128–146. doi: 10.1111/j.0105-2896.2010.00909.x. PubMed DOI

Martinvalet D., Dykxhoorn D.M., Ferrini R., Lieberman J. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death. Cell. 2008;133:681–692. doi: 10.1016/j.cell.2008.03.032. PubMed DOI PMC

Dotiwala F., Lieberman J. Granulysin: Killer lymphocyte safeguard against microbes. Curr. Opin. Immunol. 2019;60:19–29. doi: 10.1016/j.coi.2019.04.013. PubMed DOI PMC

Dotiwala F., Santara S.S., Binker-Cosen A.A., Li B., Chandrasekaran S., Lieberman J. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program. Cell. 2017;171:1125–1137.e11. doi: 10.1016/j.cell.2017.10.004. PubMed DOI PMC

Voskoboinik I., Dunstone M.A., Baran K., Whisstock J.C., Trapani J.A. Perforin: Structure, function, and role in human immunopathology. Immunol. Rev. 2010;235:35–54. doi: 10.1111/j.0105-2896.2010.00896.x. PubMed DOI

Ohta T., Koshi K., Ushizawa K., Hosoe M., Takahashi T., Yamaguchi T., Kizaki K., Hashizume K. Expression profiles of perforin, granzyme B and granulysin genes during the estrous cycle and gestation in the bovine endometrium. Anim. Sci. J. 2014;85:763–769. doi: 10.1111/asj.12209. PubMed DOI

Endsley J.J., Furrer J.L., Endsley M.A., McIntosh M.A., Maue A.C., Waters W.R., Lee D.R., Estes D.M. Characterization of bovine homologues of granulysin and NK-lysin. J. Immunol. 2004;173:2607–2614. doi: 10.4049/jimmunol.173.4.2607. PubMed DOI

Chen J., Huddleston J., Buckley R.M., Malig M., Lawhon S.D., Skow L.C., Lee M.O., Eichler E.E., Andersson L., Womack J.E. Bovine NK-lysin: Copy number variation and functional diversification. Proc. Natl. Acad. Sci. USA. 2015;112:E7223–E7229. doi: 10.1073/pnas.1519374113. PubMed DOI PMC

Yang J., Vrettou C., Connelley T., Morrison W.I. Identification and annotation of bovine granzyme genes reveals a novel granzyme encoded within the trypsin-like locus. Immunogenetics. 2018;70:585–597. doi: 10.1007/s00251-018-1062-6. PubMed DOI PMC

NCBI’s RefSeq Database. [(accessed on 30 December 2020)]; Available online: http://www.ncbi.nlm.nih.gov/RefSeq/

Resources Genbank. [(accessed on 30 December 2020)]; Available online: http://www.ncbi.nlm.nih.gov/genbank/

De Volo S.B., Reynolds R.T., Douglas M.R., Antolin M.F. An improved extraction method to increase DNA yield from molted feathers. Condor. 2008;110:762–766. doi: 10.1525/cond.2008.8586. DOI

BLAST—Basic Local Alignment Search Tool. [(accessed on 30 December 2020)]; Available online: http://blast.ncbi.nlm.nih.gov/Blast.cgi.

SPLIGN. [(accessed on 30 December 2020)]; Available online: https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi?textpage=online&level=form.

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Primer-BLAST. [(accessed on 30 December 2020)]; Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/

FastQC. [(accessed on 30 December 2020)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–2851. doi: 10.1093/bioinformatics/btu356. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Depristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., Del Angel G., Rivas M.A., Hanna M., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC

Picard Tools. [(accessed on 30 December 2020)]; Available online: http://broadinstitute.github.io/picard/

Breese M.R., Liu Y. NGSUtils: A software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29:494–496. doi: 10.1093/bioinformatics/bts731. PubMed DOI PMC

BBMap—Short Read Aligner. [(accessed on 30 December 2020)]; Available online: https://sourceforge.net/projects/bbmap/

Robinson J.T., Thorvaldsdóttir H., Wenger A.M., Zehir A., Mesirov J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–e34. doi: 10.1158/0008-5472.CAN-17-0337. PubMed DOI PMC

Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999;41:95–98.

Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI

Stephens M., Donnelly P. A Comparison of Bayesian Methods for Haplotype Reconstruction from Population Genotype Data. Am. J. Hum. Genet. 2003;73:1162–1169. doi: 10.1086/379378. PubMed DOI PMC

Ciccarese S., Burger P.A., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front. Genet. 2019;10:997. doi: 10.3389/fgene.2019.00997. PubMed DOI PMC

Alkan C., Sajjadian S., Eichler E.E. Limitations of next-generation genome sequence assembly. Nat. Methods. 2010;8:61–65. doi: 10.1038/nmeth.1527. PubMed DOI PMC

Ming L., Wang Z., Yi L., Batmunkh M., Liu T., Siren D., He J., Juramt N., Jambl T., Li Y., et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 2020;20:770–780. doi: 10.1111/1755-0998.13141. PubMed DOI

Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC

Richardson M.F., Munyard K., Croft L.J., Allnutt T.R., Jackling F., Alshanbari F., Jevit M., Wright G.A., Cransberg R., Tibary A., et al. Chromosome-Level Alpaca Reference Genome VicPac3.1 Improves Genomic Insight into the Biology of New World Camelids. Front. Genet. 2019;10:586. doi: 10.3389/fgene.2019.00586. PubMed DOI PMC

Hussen J., Shawaf T., Al-Herz A.I., Alturaifi H.R., Alluwaimi A.M. Reactivity of commercially available monoclonal antibodies to human CD antigens with peripheral blood leucocytes of dromedary camels (Camelus dromedarius) Open Veter. J. 2017;7:150–153. doi: 10.4314/ovj.v7i2.12. PubMed DOI PMC

Muyldermans S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013;82:775–797. doi: 10.1146/annurev-biochem-063011-092449. PubMed DOI

Lado S., Elbers J.P., Rogers M.F., Melo-Ferreira J., Yadamsuren A., Corander J., Horin P., Burger P.A. Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genom. 2020;21:1–17. doi: 10.1186/s12864-020-06990-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...