Gene Correction Recovers Phagocytosis in Retinal Pigment Epithelium Derived from Retinitis Pigmentosa-Human-Induced Pluripotent Stem Cells

. 2021 Feb 20 ; 22 (4) : . [epub] 20210220

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33672445

Hereditary retinal dystrophies (HRD) represent a significant cause of blindness, affecting mostly retinal pigment epithelium (RPE) and photoreceptors (PRs), and currently suffer from a lack of effective treatments. Highly specialized RPE and PR cells interact mutually in the functional retina, therefore primary HRD affecting one cell type leading to a secondary HRD in the other cells. Phagocytosis is one of the primary functions of the RPE and studies have discovered that mutations in the phagocytosis-associated gene Mer tyrosine kinase receptor (MERTK) lead to primary RPE dystrophy. Treatment strategies for this rare disease include the replacement of diseased RPE with healthy autologous RPE to prevent PR degeneration. The generation and directed differentiation of patient-derived human-induced pluripotent stem cells (hiPSCs) may provide a means to generate autologous therapeutically-relevant adult cells, including RPE and PR. However, the continued presence of the MERTK gene mutation in patient-derived hiPSCs represents a significant drawback. Recently, we reported the generation of a hiPSC model of MERTK-associated Retinitis Pigmentosa (RP) that recapitulates disease phenotype and the subsequent creation of gene-corrected RP-hiPSCs using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9. In this study, we differentiated gene-corrected RP-hiPSCs into RPE and found that these cells had recovered both wild-type MERTK protein expression and the lost phagocytosis of fluorescently-labeled photoreceptor outer segments observed in uncorrected RP-hiPSC-RPE. These findings provide proof-of-principle for the utility of gene-corrected hiPSCs as an unlimited cell source for personalized cell therapy of rare vision disorders.

Zobrazit více v PubMed

Hartong D.T., Berson E.L., Dryja T.P. Retinitis pigmentosa. Lancet. 2006;368:1795–1809. doi: 10.1016/S0140-6736(06)69740-7. PubMed DOI

Thompson D.A., Li Y., McHenry C.L., Carlson T.J., Ding X., Sieving P.A., Gal A. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat. Genet. 2001;28:123–124. doi: 10.1038/88828. PubMed DOI

Gu S.M., Thompson D.A., Srikumari C.S., Lorenz B., Finckh U., Nicoletti A., Murthy K.R., Rathmann M., Kumaramanickavel G., Denton M.J., et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 1997;17:194–197. doi: 10.1038/ng1097-194. PubMed DOI

Sun H., Tsunenari T., Yau K.W., Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. USA. 2002;99:4008–4013. doi: 10.1073/pnas.052692999. PubMed DOI PMC

Duncan J.L., LaVail M.M., Yasumura D., Matthes M.T., Yang H., Trautmann N., Chappelow A.V., Feng W., Earp H.S., Matsushima G.K., et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Investig. Ophthalmol. Vis. Sci. 2003;44:826–838. doi: 10.1167/iovs.02-0438. PubMed DOI

Johnson A.A., Guziewicz K.E., Lee C.J., Kalathur R.C., Pulido J.S., Marmorstein L.Y., Marmorstein A.D. Bestrophin 1 and retinal disease. Prog. Retin. Eye Res. 2017;58:45–69. doi: 10.1016/j.preteyeres.2017.01.006. PubMed DOI PMC

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Artero Castro A., Lukovic D., Jendelova P., Erceg S. Concise Review: Human Induced Pluripotent Stem Cell Models of Retinitis Pigmentosa. Stem Cells. 2018;36:474–481. doi: 10.1002/stem.2783. PubMed DOI

Yang L., Yang J.L., Byrne S., Pan J., Church G.M. CRISPR/Cas9-Directed Genome Editing of Cultured Cells. Curr. Protoc. Mol. Biol. 2014;107:31.1.1–31.1.17. doi: 10.1002/0471142727.mb3101s107. PubMed DOI

Bassuk A.G., Zheng A., Li Y., Tsang S.H., Mahajan V.B. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Sci. Rep. 2016;6:19969. doi: 10.1038/srep19969. PubMed DOI PMC

D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., LaVail M.M., Vollrath D. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 2000;9:645–651. doi: 10.1093/hmg/9.4.645. PubMed DOI

Lukovic D., Castro A.A., Delgado A.B.G., Bernal M.D.L.A.M., Pelaez N.L., Lloret A.D., Espejo R.P., Kamenarova K., Sánchez L.F., Cuenca N., et al. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci. Rep. 2015;5:12910. doi: 10.1038/srep12910. PubMed DOI PMC

Gal A., Li Y., Thompson D.A., Weir J., Orth U., Jacobson S.G., Apfelstedt-Sylla E., Vollrath D. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 2000;26:270–271. doi: 10.1038/81555. PubMed DOI

Castro A.A., Long K., Bassett A., Machuca C., Leon M., Avila-Fernandez A., Cortón M., Vidal-Puig T., Ayuso C., Lukovic D., et al. Generation of gene-corrected human induced pluripotent stem cell lines derived from retinitis pigmentosa patient with Ser331Cysfs*5 mutation in MERTK. Stem Cell Res. 2018;34:101341. doi: 10.1016/j.scr.2018.11.003. PubMed DOI

Brandl C., Zimmermann S.J., Milenkovic V.M., Rosendahl S.M., Grassmann F., Milenkovic A., Hehr U., Federlin M., Wetzel C.H., Helbig H., et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC) Neuromol. Med. 2014;16:551–564. doi: 10.1007/s12017-014-8308-8. PubMed DOI PMC

Khajavi M., Inoue K., Lupski J.R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur. J. Hum. Genet. EJHG. 2006;14:1074–1081. doi: 10.1038/sj.ejhg.5201649. PubMed DOI

Carr A.J., Vugler A., Lawrence J., Chen L.L., Ahmado A., Chen F.K., Semo M., Gias C., da Cruz L., Moore H.D., et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis. 2009;15:283–295. PubMed PMC

Carr A.J., Vugler A.A., Hikita S.T., Lawrence J.M., Gias C., Chen L.L., Buchholz D.E., Ahmado A., Semo M., Smart M.J.K., et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE. 2009;4:e8152. doi: 10.1371/journal.pone.0008152. PubMed DOI PMC

Westenskow P.D., Moreno S.K., Krohne T.U., Kurihara T., Zhu S., Zhang Z.N., Zhao T., Xu Y., Ding S., Friedlander M. Using flow cytometry to compare the dynamics of photoreceptor outer segment phagocytosis in iPS-derived RPE cells. Investig. Ophthalmol. Vis. Sci. 2012;53:6282–6290. doi: 10.1167/iovs.12-9721. PubMed DOI PMC

Mehat M.S., Sundaram V., Ripamonti C., Robson A.G., Smith A.J., Borooah S., Robinson M., Rosenthal A.N., Innes W., Weleber R.G., et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 2018;125:1765–1775. doi: 10.1016/j.ophtha.2018.04.037. PubMed DOI PMC

Mandai M., Kurimoto Y., Takahashi M. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017;377:792–793. doi: 10.1056/NEJMoa1608368. PubMed DOI

Cho G.Y., Abdulla Y., Sengillo J.D., Justus S., Schaefer K.A., Bassuk A.G., Tsang S.H., Mahajan V.B. CRISPR-mediated Ophthalmic Genome Surgery. Curr. Ophthalmol. Rep. 2017;5:199–206. doi: 10.1007/s40135-017-0144-1. PubMed DOI PMC

Ghazi N.G., Abboud E.B., Nowilaty S.R., Alkuraya H., Alhommadi A., Cai H., Hou R., Deng W.-T., Boye S.L., Almaghamsi A., et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: Results of a phase I trial. Hum. Genet. 2016;135:327–343. doi: 10.1007/s00439-016-1637-y. PubMed DOI

Ramsden C.M., Nommiste B., Lane A.R., Carr A.J.F., Powner M.B., Smart M.J., Chen L.L., Muthiah M.N., Webster A.R., Moore A.T., et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci. Rep. 2017;7:51. doi: 10.1038/s41598-017-00142-7. PubMed DOI PMC

Suzuki K., Tsunekawa Y., Hernandez-Benitez R., Wu J., Zhu J., Kim E.J., Hatanaka F., Yamamoto M., Araoka T., Li Z., et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–149. doi: 10.1038/nature20565. PubMed DOI PMC

Artero Castro A., Leon M., Del Buey Furio V., Erceg S., Lukovic D. Generation of a human iPSC line by mRNA reprogramming. Stem Cell Res. 2018;28:157–160. doi: 10.1016/j.scr.2018.02.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...