Gene Correction Recovers Phagocytosis in Retinal Pigment Epithelium Derived from Retinitis Pigmentosa-Human-Induced Pluripotent Stem Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33672445
PubMed Central
PMC7923278
DOI
10.3390/ijms22042092
PII: ijms22042092
Knihovny.cz E-zdroje
- Klíčová slova
- RPE, Retinitis Pigmentosa, gene correction, induced pluripotent stem cells,
- MeSH
- buněčná diferenciace genetika MeSH
- buněčné linie MeSH
- editace genu * MeSH
- fagocytóza * MeSH
- indukované pluripotentní kmenové buňky patologie ultrastruktura MeSH
- lidé MeSH
- mutace genetika MeSH
- regulace genové exprese MeSH
- retinální pigmentový epitel patologie ultrastruktura MeSH
- retinopathia pigmentosa genetika patologie MeSH
- tyrosinkinasa c-Mer genetika metabolismus MeSH
- zevní segment fotoreceptoru sítnice metabolismus patologie ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tyrosinkinasa c-Mer MeSH
Hereditary retinal dystrophies (HRD) represent a significant cause of blindness, affecting mostly retinal pigment epithelium (RPE) and photoreceptors (PRs), and currently suffer from a lack of effective treatments. Highly specialized RPE and PR cells interact mutually in the functional retina, therefore primary HRD affecting one cell type leading to a secondary HRD in the other cells. Phagocytosis is one of the primary functions of the RPE and studies have discovered that mutations in the phagocytosis-associated gene Mer tyrosine kinase receptor (MERTK) lead to primary RPE dystrophy. Treatment strategies for this rare disease include the replacement of diseased RPE with healthy autologous RPE to prevent PR degeneration. The generation and directed differentiation of patient-derived human-induced pluripotent stem cells (hiPSCs) may provide a means to generate autologous therapeutically-relevant adult cells, including RPE and PR. However, the continued presence of the MERTK gene mutation in patient-derived hiPSCs represents a significant drawback. Recently, we reported the generation of a hiPSC model of MERTK-associated Retinitis Pigmentosa (RP) that recapitulates disease phenotype and the subsequent creation of gene-corrected RP-hiPSCs using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9. In this study, we differentiated gene-corrected RP-hiPSCs into RPE and found that these cells had recovered both wild-type MERTK protein expression and the lost phagocytosis of fluorescently-labeled photoreceptor outer segments observed in uncorrected RP-hiPSC-RPE. These findings provide proof-of-principle for the utility of gene-corrected hiPSCs as an unlimited cell source for personalized cell therapy of rare vision disorders.
Center for Biomedical Network Research on Rare Diseases ISCIII 28040 Madrid Spain
Department of Genetics and Genomics IIS Fundación Jiménez Díaz 28040 Madrid Spain
Wellcome Sanger Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SA UK
Zobrazit více v PubMed
Hartong D.T., Berson E.L., Dryja T.P. Retinitis pigmentosa. Lancet. 2006;368:1795–1809. doi: 10.1016/S0140-6736(06)69740-7. PubMed DOI
Thompson D.A., Li Y., McHenry C.L., Carlson T.J., Ding X., Sieving P.A., Gal A. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat. Genet. 2001;28:123–124. doi: 10.1038/88828. PubMed DOI
Gu S.M., Thompson D.A., Srikumari C.S., Lorenz B., Finckh U., Nicoletti A., Murthy K.R., Rathmann M., Kumaramanickavel G., Denton M.J., et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 1997;17:194–197. doi: 10.1038/ng1097-194. PubMed DOI
Sun H., Tsunenari T., Yau K.W., Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. USA. 2002;99:4008–4013. doi: 10.1073/pnas.052692999. PubMed DOI PMC
Duncan J.L., LaVail M.M., Yasumura D., Matthes M.T., Yang H., Trautmann N., Chappelow A.V., Feng W., Earp H.S., Matsushima G.K., et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Investig. Ophthalmol. Vis. Sci. 2003;44:826–838. doi: 10.1167/iovs.02-0438. PubMed DOI
Johnson A.A., Guziewicz K.E., Lee C.J., Kalathur R.C., Pulido J.S., Marmorstein L.Y., Marmorstein A.D. Bestrophin 1 and retinal disease. Prog. Retin. Eye Res. 2017;58:45–69. doi: 10.1016/j.preteyeres.2017.01.006. PubMed DOI PMC
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Artero Castro A., Lukovic D., Jendelova P., Erceg S. Concise Review: Human Induced Pluripotent Stem Cell Models of Retinitis Pigmentosa. Stem Cells. 2018;36:474–481. doi: 10.1002/stem.2783. PubMed DOI
Yang L., Yang J.L., Byrne S., Pan J., Church G.M. CRISPR/Cas9-Directed Genome Editing of Cultured Cells. Curr. Protoc. Mol. Biol. 2014;107:31.1.1–31.1.17. doi: 10.1002/0471142727.mb3101s107. PubMed DOI
Bassuk A.G., Zheng A., Li Y., Tsang S.H., Mahajan V.B. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Sci. Rep. 2016;6:19969. doi: 10.1038/srep19969. PubMed DOI PMC
D’Cruz P.M., Yasumura D., Weir J., Matthes M.T., Abderrahim H., LaVail M.M., Vollrath D. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 2000;9:645–651. doi: 10.1093/hmg/9.4.645. PubMed DOI
Lukovic D., Castro A.A., Delgado A.B.G., Bernal M.D.L.A.M., Pelaez N.L., Lloret A.D., Espejo R.P., Kamenarova K., Sánchez L.F., Cuenca N., et al. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci. Rep. 2015;5:12910. doi: 10.1038/srep12910. PubMed DOI PMC
Gal A., Li Y., Thompson D.A., Weir J., Orth U., Jacobson S.G., Apfelstedt-Sylla E., Vollrath D. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 2000;26:270–271. doi: 10.1038/81555. PubMed DOI
Castro A.A., Long K., Bassett A., Machuca C., Leon M., Avila-Fernandez A., Cortón M., Vidal-Puig T., Ayuso C., Lukovic D., et al. Generation of gene-corrected human induced pluripotent stem cell lines derived from retinitis pigmentosa patient with Ser331Cysfs*5 mutation in MERTK. Stem Cell Res. 2018;34:101341. doi: 10.1016/j.scr.2018.11.003. PubMed DOI
Brandl C., Zimmermann S.J., Milenkovic V.M., Rosendahl S.M., Grassmann F., Milenkovic A., Hehr U., Federlin M., Wetzel C.H., Helbig H., et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC) Neuromol. Med. 2014;16:551–564. doi: 10.1007/s12017-014-8308-8. PubMed DOI PMC
Khajavi M., Inoue K., Lupski J.R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur. J. Hum. Genet. EJHG. 2006;14:1074–1081. doi: 10.1038/sj.ejhg.5201649. PubMed DOI
Carr A.J., Vugler A., Lawrence J., Chen L.L., Ahmado A., Chen F.K., Semo M., Gias C., da Cruz L., Moore H.D., et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis. 2009;15:283–295. PubMed PMC
Carr A.J., Vugler A.A., Hikita S.T., Lawrence J.M., Gias C., Chen L.L., Buchholz D.E., Ahmado A., Semo M., Smart M.J.K., et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE. 2009;4:e8152. doi: 10.1371/journal.pone.0008152. PubMed DOI PMC
Westenskow P.D., Moreno S.K., Krohne T.U., Kurihara T., Zhu S., Zhang Z.N., Zhao T., Xu Y., Ding S., Friedlander M. Using flow cytometry to compare the dynamics of photoreceptor outer segment phagocytosis in iPS-derived RPE cells. Investig. Ophthalmol. Vis. Sci. 2012;53:6282–6290. doi: 10.1167/iovs.12-9721. PubMed DOI PMC
Mehat M.S., Sundaram V., Ripamonti C., Robson A.G., Smith A.J., Borooah S., Robinson M., Rosenthal A.N., Innes W., Weleber R.G., et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 2018;125:1765–1775. doi: 10.1016/j.ophtha.2018.04.037. PubMed DOI PMC
Mandai M., Kurimoto Y., Takahashi M. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017;377:792–793. doi: 10.1056/NEJMoa1608368. PubMed DOI
Cho G.Y., Abdulla Y., Sengillo J.D., Justus S., Schaefer K.A., Bassuk A.G., Tsang S.H., Mahajan V.B. CRISPR-mediated Ophthalmic Genome Surgery. Curr. Ophthalmol. Rep. 2017;5:199–206. doi: 10.1007/s40135-017-0144-1. PubMed DOI PMC
Ghazi N.G., Abboud E.B., Nowilaty S.R., Alkuraya H., Alhommadi A., Cai H., Hou R., Deng W.-T., Boye S.L., Almaghamsi A., et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: Results of a phase I trial. Hum. Genet. 2016;135:327–343. doi: 10.1007/s00439-016-1637-y. PubMed DOI
Ramsden C.M., Nommiste B., Lane A.R., Carr A.J.F., Powner M.B., Smart M.J., Chen L.L., Muthiah M.N., Webster A.R., Moore A.T., et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci. Rep. 2017;7:51. doi: 10.1038/s41598-017-00142-7. PubMed DOI PMC
Suzuki K., Tsunekawa Y., Hernandez-Benitez R., Wu J., Zhu J., Kim E.J., Hatanaka F., Yamamoto M., Araoka T., Li Z., et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–149. doi: 10.1038/nature20565. PubMed DOI PMC
Artero Castro A., Leon M., Del Buey Furio V., Erceg S., Lukovic D. Generation of a human iPSC line by mRNA reprogramming. Stem Cell Res. 2018;28:157–160. doi: 10.1016/j.scr.2018.02.011. PubMed DOI