• This record comes from PubMed

Open, High-Resolution EI+ Spectral Library of Anthropogenic Compounds

. 2021 ; 9 () : 622558. [epub] 20210309

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

To address the lack of high-resolution electron ionisation mass spectral libraries (HR-[EI+]-MS) for environmental chemicals, a retention-indexed HR-[EI+]-MS library has been constructed following analysis of authentic compounds via GC-Orbitrap MS. The library is freely provided alongside a compound database of predicted physicochemical properties. Currently, the library contains over 350 compounds from 56 compound classes and includes a range of legacy and emerging contaminants. The RECETOX Exposome HR-[EI+]-MS library expands the number of freely available resources for use in full-scan chemical exposure studies and is available at: https://doi.org/10.5281/zenodo.4471217.

See more in PubMed

Stettin D, Poulin RX, Pohnert G. Metabolomics benefits from orbitrap GC–MS—comparison of low- and high-resolution GC–MS. Metabolites. (2020) 10:143. 10.3390/metabo10040143 PubMed DOI PMC

Misra BB, Olivier M. High resolution GC-orbitrap-MS metabolomics using both electron ionization and chemical ionization for analysis of human plasma. J Proteome Res. (2020) 19:2717–31. 10.1021/acs.jproteome.9b00774 PubMed DOI PMC

Qiu Y, Moir RD, Willis IM, Seethapathy S, Biniakewitz RC, Kurland IJ. Enhanced isotopic ratio outlier analysis (IROA) peak detection and identification with ultra-high resolution GC-orbitrap/MS: potential application for investigation of model organism metabolomes. Metabolites. (2018) 8:9. 10.3390/metabo8010009 PubMed DOI PMC

Miller IJ, Peters SR, Overmyer KA, Paulson BR, Westphall MS, Coon JJ. Real-time health monitoring through urine metabolomics. NPJ Digit Med. (2019) 2:109. 10.1038/s41746-019-0185-y PubMed DOI PMC

Weidt S, Haggarty J, Kean R, Cojocariu CI, Silcock PJ, Rajendran R, et al. . A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms. Metabolomics. (2016) 12:1–10. 10.1007/s11306-016-1134-2 PubMed DOI PMC

Shen S, Li L, Song S, Bai Y, Liu H. Metabolomic study of mouse embryonic fibroblast cells in response to autophagy based on high resolution gas chromatography–mass spectrometry. Int J Mass Spectrom. (2018) 434:215–21. 10.1016/j.ijms.2018.09.010 DOI

Tienstra M, Mol HGJ. Application of gas chromatography coupled to quadrupole-orbitrap mass spectrometry for pesticide residue analysis in cereals and feed ingredients. J AOAC Int. (2018) 101:342–51. 10.5740/jaoacint.17-0408 PubMed DOI

Postigo C, Cojocariu CI, Richardson SD, Silcock PJ, Barcelo D. Characterization of iodinated disinfection by-products in chlorinated and chloraminated waters using Orbitrap based gas chromatography-mass spectrometry. Anal Bioanal Chem. (2016) 408:3401–11. 10.1007/s00216-016-9435-x PubMed DOI

Hayward DG, Archer JC, Andrews S, Fairchild RD, Gentry J, Jenkins R, et al. . Application of a high-resolution quadrupole/orbital trapping mass spectrometer coupled to a gas chromatograph for the determination of persistent organic pollutants in cow's and human milk. J Agric Food Chem. (2018) 66:11823–9. 10.1021/acs.jafc.8b03721 PubMed DOI

Mol HGJ, Tienstra M, Zomer P. Evaluation of gas chromatography – electron ionization – full scan high resolution orbitrap mass spectrometry for pesticide residue analysis. Anal Chim Acta. (2016) 935:161–72. 10.1016/j.aca.2016.06.017 PubMed DOI

Abushareeda W, Tienstra M, Lommen A, Blokland M, Sterk S, Kraiem S, et al. . Comparison of gas chromatography/quadrupole time-of-flight and quadrupole orbitrap mass spectrometry in anti-doping analysis: I. Detection of anabolic-androgenic steroids. Rapid Commun Mass Spectrom. (2018) 32:2055–64. 10.1002/rcm.8281 PubMed DOI

Brockbals L, Habicht M, Hajdas I, Galassi FM, Rühli FJ, Kraemer T, Shared Last Authorship . Untargeted metabolomics-like screening approach for chemical characterization and differentiation of canopic jar and mummy samples from ancient Egypt using GC-high resolution MS. Analyst. (2018) 143:4503–12. 10.1039/c8an01288a PubMed DOI

Peterson AC, Hauschild JP, Quarmby ST, Krumwiede D, Lange O, Lemke RAS, et al. . Development of a GC/quadrupole-orbitrap mass spectrometer, part I: design and characterization. Anal Chem. (2014) 86:10036–43. 10.1021/ac5014767 PubMed DOI PMC

Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol. (2017) 51:11505–12. 10.1021/acs.est.7b02184 PubMed DOI

Kwiecien NW, Bailey DJ, Rush MJP, Cole JS, Ulbrich A, Hebert AS, et al. . High-resolution filtering for improved small molecule identification via GC/MS. Anal Chem. (2015) 87:8328–35. 10.1021/acs.analchem.5b01503 PubMed DOI PMC

Su X, Lu W, Rabinowitz JD. Metabolite spectral accuracy on orbitraps. Anal Chem. (2017) 89:5940–8. 10.1021/acs.analchem.7b00396 PubMed DOI PMC

Baumeister TUH, Ueberschaar N, Pohnert G. Gas-phase chemistry in the GC orbitrap mass spectrometer. J Am Soc Mass Spectrom. (2019) 30:573–80. 10.1007/s13361-018-2117-5 PubMed DOI

Margolin Eren KJ, Elkabets O, Amirav A. A comparison of electron ionization mass spectra obtained at 70 eV, low electron energies and with cold EI and their NIST library identification probabilities. J Mass Spectrom. (2020) 55:e4646. 10.1002/jms.4646 PubMed DOI

McEachran AD, Balabin I, Cathey T, Transue TR, Al-Ghoul H, Grulke C, et al. . Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns. Sci Data. (2019) 6:141. 10.1038/s41597-019-0145-z PubMed DOI PMC

Hites RA, Jobst KJ. Response to “Letter to the Editor: Optimism for Nontarget Analysis in Environmental Chemistry.” Environ Sci Technol. (2019) 53:5531–3. 10.1021/acs.est.9b02473 PubMed DOI

van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. (1963) 11:463–71. 10.1016/S0021-9673(01)80947-X PubMed DOI

Chambers MC, MacLean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. . A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. (2012) 30:918–20. 10.1038/nbt.2377 PubMed DOI PMC

Holman JD, Tabb DL, Mallick P. Employing proteowizard to convert raw mass spectrometry data. Curr Protoc Bioinformatics. (2014) 46:13.24.1–9. 10.1002/0471250953.bi1324s46 PubMed DOI PMC

Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. . MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. (2015) 12:523–6. 10.1038/nmeth.3393 PubMed DOI PMC

Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, et al. . Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods. (2018) 15:53–6. 10.1038/nmeth.4512 PubMed DOI PMC

Ausloos P, Clifton CL, Lias SG, Mikaya AI, Stein SE, Tchekhovskoi DV, et al. . The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom. (1999) 10:287–99. 10.1016/S1044-0305(98)00159-7 PubMed DOI

Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, et al. . Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. (2016) 88:7946–58. 10.1021/acs.analchem.6b00770 PubMed DOI PMC

Stein S. Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal Chem. (2012) 84:7274–82. 10.1021/ac301205z PubMed DOI

Stein SE, Scott DR. Optimization and testing of mass spectral library search algorithms for compound identification. J Am Soc Mass Spectrom. (1994) 5:859–66. 10.1016/1044-0305(94)87009-8 PubMed DOI

NIST/EPA/NIH Mass Spectral Library (NIST 14) . NIST Standard Reference Database 1A. National Institute of Standards and Technology (NIST) (2004). Available online at: http://www.nist.gov/srd/

Tsugawa H. CompMS Metabolomics MSP Spectra Kit. Available online at: http://prime.psc.riken.jp/compms/msdial/main.html#MSP

Scientific Working Group for the Analysis of Seized Drugs . SWGDRUG Mass Spectral Library. Available online at: https://swgdrug.org/ms.htm (accessed October 11, 2020).

Wallace WE, Ji W, Tchekhovskoi DV, Phinney KW, Stein SE. Mass spectral library quality assurance by inter-library comparison. J Am Soc Mass Spectrom. (2017) 28:733–8. 10.1007/s13361-016-1589-4 PubMed DOI PMC

Cayman Chemical . Cayman Spectral Library. Available online at: https://www.caymanchem.com/forensics/publications/csl (accessed October 11, 2020).

Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, et al. . GMD@CSB.DB: the Golm metabolome database. Bioinformatics. (2005) 21:1635–8. 10.1093/bioinformatics/bti236 PubMed DOI

Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, et al. . Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A. (2007) 1157:414–21. 10.1016/j.chroma.2007.05.044 PubMed DOI

NIST . NIST 17 Libraries and Software. Maryland. (2017). 10.18434/T4H594 DOI

Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O. The chemical translation service-a web-based tool to improve standardization of metabolomic reports. Bioinformatics. (2010) 26:2647–8. 10.1093/bioinformatics/btq476 PubMed DOI PMC

United States Environmental Protection Agency . CompTox Chemicals Dashbaord. Available online at: https://comptox.epa.gov/dashboard (accessed October 11, 2020).

ACD/ChemSketch, version 2018.2.1 Toronto, ON: Advanced Chemistry Development, Inc. (2018). Available online at: www.acdlabs.com

Sander T, Freyss J, Von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. (2015) 55:460–73. 10.1021/ci500588j PubMed DOI

Chen Y, Stork C, Hirte S, Kirchmair J. NP-scout: machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules. (2019) 9:43. 10.3390/biom9020043 PubMed DOI PMC

Stork C, Embruch G, Šícho M, De Bruyn Kops C, Chen Y, Svozil D, Kirchmair J. NERDD: A web portal providing access to in silico tools for drug discovery. Bioinformatics. (2020) 36:1291–2. 10.1093/bioinformatics/btz695 PubMed DOI

Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. . ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. (2016) 8:1–20. 10.1186/s13321-016-0174-y PubMed DOI PMC

Sievert C. Interactive Web-Based Data Visualization With R, Plotly, and Shiny. Florida: Chapman and Hall/CRC; (2020). 10.1201/9780429447273 DOI

Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D. InChI, the IUPAC International Chemical Identifier. J Cheminformatics. (2015) 7:23. 10.1186/s13321-015-0068-4 PubMed DOI PMC

Meijer J, Lamoree M, Hamers T, Antingac J-P, Hutinet S, Debrauwer L, et al. . S71 | CECSCREEN | HBM4EU CECscreen: Screening List for Chemicals of Emerging Concern Plus Metadata and Predicted Phase 1 Metabolites. (2020). 10.5281/ZENODO.395658 (accessed October 11, 2020). DOI

Stanstrup J, Broeckling C, Helmus R, Hoffmann N, Mathé E, Naake T, et al. . The metaRbolomics toolbox in Bioconductor and beyond. Metabolites. (2019) 9:200. 10.3390/metabo9100200 PubMed DOI PMC

Matsuo T, Tsugawa H, Miyagawa H, Fukusaki E. Integrated strategy for unknown EI-MS identification using quality control calibration curve, multivariate analysis, EI-MS spectral database, and retention index prediction. Anal Chem. (2017) 89:6766–73. 10.1021/acs.analchem.7b01010 PubMed DOI

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. . Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. (2014) 48:2097–8. 10.1021/es5002105 PubMed DOI

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. . Proposed minimum reporting standards for chemical analysis. Metabolomics. (2007) 3:211–21. 10.1007/s11306-007-0082-2 PubMed DOI PMC

Aksenov AA, Laponogov I, Zhang Z, Doran SLF, Belluomo I, Veselkov D, et al. . Auto-deconvolution and molecular networking of gas chromatography-mass spectrometry data. Nat Biotechnol. (2021) 39:169–73. 10.1038/s41587-020-0700-3 PubMed DOI PMC

Elie N, Santerre C, Touboul D. Generation of a molecular network from electron ionization mass spectrometry data by combining MZmine2 and MetGem software. Anal Chem. (2019) 91:11489–92. 10.1021/acs.analchem.9b02802 PubMed DOI

Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, et al. . Recommendations for reporting metabolite data. Plant Cell. (2011) 23:2477–82. 10.1105/tpc.111.086272 PubMed DOI PMC

Dossin E, Martin E, Diana P, Castellon A, Monge A, Pospisil P, et al. . Prediction models of retention indices for increased confidence in structural elucidation during complex matrix analysis: application to gas chromatography coupled with high-resolution mass spectrometry. Anal Chem. (2016) 88:7539–47. 10.1021/acs.analchem.6b00868 PubMed DOI

Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ Sci Technol. (2017) 51:5357–9. 10.1021/acs.est.7b01908 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...