Restoration management of cattle resting place in mountain grassland

. 2021 ; 16 (4) : e0249445. [epub] 20210401

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33793653

This study investigated the effect of restoration management of a weed-infested area, previously used as cattle resting place, on herbage production and nutrient concentrations in the soil and herbage. The experiment was undertaken from 2004 to 2011 at the National Park of Nízké Tatry, Slovakia. Three treatments were applied: (i) cutting twice per year, (ii) herbicide application, followed after three weeks by reseeding with a mixture of vascular plant species and then cut twice per year, and (iii) unmanaged. Treatments had significant effect on biomass production and concentration of nutrients in the soil and in herbage. Nutrient concentrations in herbage and in soil declined progressively under the cutting treatments and reached optimum ranges for dairy cattle at the end of the experiment when herbage N was less than 15 g kg-1 and herbage P was 3.4 g kg-1. There was also a strong positive relationship under the cutting treatments between soil nutrient concentrations and herbage nutrient concentrations for N, P, K, Mg and Ca. Although the cutting management as well as the combination of herbicide application with cutting management reduced nutrient concentrations in the soil and in herbage, the nutrient concentrations remained relatively high. We can conclude that restoration of grassland covered with weedy species like Urtica dioica and Rumex obtusifolius, with excessive levels of soil nutrients, cannot be achieved just by cutting and herbicide application.

Zobrazit více v PubMed

Huyghe C, De Vliegher A, Goliński P. European grassland overview: temperate region. In: Grassland Science in Europe, vol 19—EGF at 50: the future of European grasslands. 2014. p. 29–39.

Galvánek D, Lepš J. How do management and restoration needs of mountain grasslands depend on moisture regime? Experimental study from north-western Slovakia (Western Carpathians). Appl Veg Sci. 2009;(12):273–82.

George MR, Brown JR, Clawson WJ. Application of nonequilibrium ecology to management of Mediterranean grasslands. J Range Manag. 1992;45(5):436–9.

Rietkerk M, van de Koppel J. Alternate Stable States and Threshold Effects in Semi-Arid Grazing Systems. Oikos. 1997;(79):69–76.

Norton JB, Monaco TA, Norton JM, Johnson DA, Jones TA. Soil morphology and organic matter dynamics under cheatgrass and sagebrush-steppe plant communities. J Arid Environ. 2004;(57):445–66.

Gibbons S. T and Youtie B. An examination of annual grass control methods for use on the Lawrence Memorial Grassland Preserve. Bull Ecol Soc Am. 1996.

Stover HJ, Naeth MA, Wilkinson SR. Glyphosate, steam and cutting for non-native plant control in Alberta fescue grassland restoration. Appl Veg Sci. 2017;(20):608–19.

Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;(3):28. 10.1186/s12302-016-0070-0 PubMed DOI PMC

Simmons MT, Windhager S, Power P, Lott J, Lyons RK, Schwope C. Selective and non-selective control of invasive plants: The short-term effects of growing-season prescribed fire, herbicide, and mowing in two texas prairies. Restor Ecol. 2007;(15):662–9.

Orloff LN, Mangold JM, Menalled FD. Site-specific effects of exotic annual grass control integrated with revegetation. Ecol Restor. 2015;(33):147–55.

Kanissery R, Gairhe B, Kadyampakeni D, Batuman O, Alferez F. Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants. 2019. p. 499. 10.3390/plants8110499 PubMed DOI PMC

Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H. Relevance of urban glyphosate use for surface water quality. Chemosphere. 2010;(81):422–9. 10.1016/j.chemosphere.2010.06.067 PubMed DOI

Gaupp-Berghausen M, Hofer M, Rewald B, Zaller JG. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci Rep. 2015;(5):12886. 10.1038/srep12886 PubMed DOI PMC

Balbuena MS, Tison L, Hahn ML, Greggers U, Menzel R, Farina WM. Effects of sublethal doses of glyphosate on honeybee navigation. J Exp Biol. 2015;(218):2799–805. 10.1242/jeb.117291 PubMed DOI

Tsui MTK, Chu LM. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere. 2003;(52):1189–97. 10.1016/S0045-6535(03)00306-0 PubMed DOI

Wilson SD, Gerry AK. Strategies for Mixed‐Grass Prairie Restoration: Herbicide, Tilling, and Nitrogen Manipulation. Restor Ecol. 1995;(3):290–8.

Stromberg MR, Kephart P. Restoring Native Grasses in California Old Fields. Ecol Restor. 1996;(14):102–11.

Wilson M V., Clark DL. Controlling invasive Arrhenatherum elatius and promoting native prairie grasses through mowing. Appl Veg Sci. 2001;(4):129–38.

Nuzzo VA. Experimental control of Garlic Mustard Alliaria-Petiolata Bieb. Cavara and granda in northern Illinois USA using fire herbicide and cutting. Nat Areas J. 1991;11(3):158–67.

Kimball S, Lulow ME, Mooney KA, Sorenson QM. Establishment and management of native functional groups in restoration. Restor Ecol. 2014;(22):81–8.

Flory SL, Clay K. Invasive plant removal method determines native plant community responses. J Appl Ecol. 2009;(46):434–42.

A.O.A.C. Official Methods of Analysis. 15th Editi. Washington, DC: Association of Official Analytical Chemist; 1990.

Mehlich A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun Soil Sci Plant Anal. 1984;(15):1409–16.

Verhoeven KJF, Simonsen KL, McIntyre LM. Implementing false discovery rate control: Increasing your power. Oikos. 2005;(108):643–7.

Dell I. Dell Statistica (data analysis software system), version 13.1 software. dell.com. Tulsa, USA; 2019.

Ter Braak CJF, Smilauer P. Canoco (version 5): Software for multivariate data exploration, testing and summarization. Microcomputer Power, Ithaca, NY, USA. 2012.

Smit HJ, Metzger MJ, Ewert F. Spatial distribution of grassland productivity and land use in Europe. Agric Syst. 2008;(98):208–19.

Smith P, Fang C, Dawson JJC, Moncrieff JB. Impact of Global Warming on Soil Organic Carbon. Adv Agron. 2008;97:1–43.

Mpokos JP, Yiakoulaki DM, Papazafeiriou ZA, Sgardelis S, Alifragis D, Papanikolaou K. Herbage production and species richness in sub-alpine grasslands of different soil parent material in Northern Greece. J Mt Sci. 2014;(11):1579–92.

Smits NAC, Willems JH, Bobbink R. Long-term after-effects of fertilisation on the restoration of calcareous grasslands. Appl Veg Sci. 2008;(11):279–86.

Hrevušová Z, Hejcman M, Pavlů V V., Hakl J, Klaudisová M, Mrkvička J. Long-term dynamics of biomass production, soil chemical properties and plant species composition of alluvial grassland after the cessation of fertilizer application in the Czech Republic. Agric Ecosyst Environ. 2009;(130):123–30.

Pavlů V, Hejcman M, Pavlů L, Gaisler J. Effect of strip seeding of Trifolium repens on a sward under continuous cattle grazing. Bodenkultur. 2006;(57):501–15.

Hejcman M, Strnad L, Hejcmanová P, Pavlů V. Response of plant species composition, biomass production and biomass chemical properties to high N, P and K application rates in Dactylis glomerata- and Festuca arundinacea-dominated grassland. Grass Forage Sci. 2012;(67):488–506.

Taylor K. Biological flora of the British Isles: Urtica dioica L. J Ecol. 2009;(97):1436–58.

Tallowin JRB, Jefferson RG. Hay production from lowland semi-natural grasslands: A review of implications for ruminant livestock systems. Grass Forage Sci. 1999;(54):99–115.

Kleinebecker T, Weber H, Hölzel N. Effects of grazing on seasonal variation of aboveground biomass quality in calcareous grasslands. Plant Ecol. 2011;(212):1563–76.

Thompson K, Parkinson JA, Band SR, Spencer RE. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytol. 1997;(136):679–89. PubMed

Baeten L, Verstraeten G, de Frenne P, Vanhellemont M, Wuyts K, Hermy M, et al.. Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs. Plant Ecol. 2011;(212):901–9.

Müllerová V, Hejcman M, Hejcmanová P, Pavlů V. Effect of fertilizer application on Urtica dioica and its element concentrations in a cut grassland. Acta Oecologica. 2014;(59):1–6.

Pavlů L, Gaisler J, Hejcman M, Pavlů V V. What is the effect of long-term mulching and traditional cutting regimes on soil and biomass chemical properties, species richness and herbage production in Dactylis glomerata grassland? Agric Ecosyst Environ. 2016;(217):13–21.

Golodets C, Kigel J, Sternberg M. Recovery of plant species composition and ecosystem function after cessation of grazing in a Mediterranean grassland. Plant Soil. 2010;(329):365–78.

Pirhofer-Walzl K, Søegaard K, Høgh-Jensen H, Eriksen J, Sanderson MA, Rasmussen J, et al.. Forage herbs improve mineral composition of grassland herbage. Grass Forage Sci. 2011;(66):415–23.

Liebisch F, Bünemann EK, Huguenin-Elie O, Jeangros B, Frossard E, Oberson A. Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur J Agron. 2013;(44):66–77.

Whitehead DC. Nutrient elements in grassland: soil-plant-animal relationships. Nutrient elements in grassland: soil-plant-animal relationships. Wallingford, Oxon, UK; CABI Publishing; 2000. 369 p.

Bakker JP. Nature Management by Grazing and Cutting: On the ecological significance of grazing and cutting regimes applied to restore former species-rich grassland communities in the Netherlands. Nature Management by Grazing and Cutting. Dordrecht, Netherlands: Kluwer; 1989. 400 p.

Perring MP, Edwards G, De Mazancourt C. Removing phosphorus from ecosystems through nitrogen fertilization and cutting with removal of biomass. Ecosystems. 2009;(12):130–1144.

Schnitzler A, Muller S. Towards an ecological basis for the conservation of subalpine heath-grassland on the upper ridges of the Vosges. J Veg Sci. 1998;(9):317–26.

Hejcman M, Schellberg J, Pavlů V. Long-term effects of cutting frequency and liming on soil chemical properties, biomass production and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertilizer application. Appl Veg Sci. 2010;(13):257–69.

Pavlů V, Schellberg J, Hejcman M. Cutting frequency vs. N application: Effect of a 20-year management in Lolio-Cynosuretum grassland. Grass Forage Sci. 2011;66(4):501–15.

Pavlů L, Pavlů V, Gaisler J, Hejcman M. Relationship between soil and biomass chemical properties, herbage yield and sward height in cut and unmanaged mountain hay meadow (Polygono-Trisetion). Flora Morphol Distrib Funct Ecol Plants. 2013;(208):599–608.

Hansson M, Fogelfors H. Management of a semi-natural grassland; results from a 15-year-old experiment in southern Sweden. J Veg Sci. 2000;(11):31–8.

Alexander M. Introduction to Soil Microbiology. 2nd Editio. John Wiley and Sons Ltd; 1977. 480 p.

Haney RL, Senseman SA, Krutz LJ, Hons FM. Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol Fertil Soils. 2002;(35):35–40.

Schaffers AP. Soil, biomass, and management of semi-natural vegetation. Part I. Interrelationships. Plant Ecol. 2002;(158):229–46.

Pavlů K, Kassahun T, Nwaogu C, Pavlů L, Gaisler JAN, Homolka P, et al.. Effect of grazing intensity and dung on herbage and soil nutrients. Plant, Soil Environ. 2019;65(7):343–8.

Shepherd MJ, Anderson JM, Bol R, Allen DK. Incorporation of (15)N from spiked cattle dung pats into soil under two moorland plant communities. Rapid Commun Mass Spectrom. 2000;(14):1361–7. 10.1002/1097-0231(20000815)14:15<1361::AID-RCM35>3.0.CO;2-# PubMed DOI

Aarons SR, O’Connor CR, Gourley CJP. Dung decomposition in temperate dairy pastures I. Changes in soil chemical properties. Aust J Soil Res. 2004;(42):107–14.

Haynes RJ, Williams PH. Nutrient Cycling and Soil Fertility in the Grazed Pasture Ecosystem. Adv Agron. 1993;(49):119–99.

Decau ML, Simon JC, Jacquet A. Fate of Urine Nitrogen in Three Soils throughout a Grazing Season. J Environ Qual. 2003;(4):1405–13. 10.2134/jeq2003.1405 PubMed DOI

Marsden KA, Jones DL, Chadwick DR. Disentangling the effect of sheep urine patch size and nitrogen loading rate on cumulative N2O emissions. Anim Prod Sci. 2016;56(3):265.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...