Preclinical evaluation of anti-VEGFR2 monoclonal antibody ramucirumab labelled with zirconium-89 for tumour imaging
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33818828
DOI
10.1002/jlcr.3909
Knihovny.cz E-zdroje
- Klíčová slova
- PET, VEGF, VEGFR, angiogenesis, monoclonal antibody, ramucirumab,
- MeSH
- humanizované monoklonální protilátky * chemie terapeutické užití farmakokinetika MeSH
- izotopové značení MeSH
- lidé MeSH
- monoklonální protilátky * chemie farmakokinetika MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- PET/CT metody MeSH
- radionuklidy * chemie MeSH
- ramucirumab * MeSH
- receptor 2 pro vaskulární endoteliální růstový faktor * metabolismus antagonisté a inhibitory MeSH
- tkáňová distribuce MeSH
- zirkonium * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- humanizované monoklonální protilátky * MeSH
- monoklonální protilátky * MeSH
- radionuklidy * MeSH
- ramucirumab * MeSH
- receptor 2 pro vaskulární endoteliální růstový faktor * MeSH
- Zirconium-89 MeSH Prohlížeč
- zirkonium * MeSH
The key factors participating in angiogenesis include vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), particularly VEGFR2. Angiogenesis suppression comprises the blocking of the VEGFR2 binding site by the monoclonal antibody ramucirumab (RAM). Our study focused on RAM radiolabelling with zirconium-89 along with subsequent in vitro and in vivo biological evaluation. RAM was conjugated with the bifunctional chelator p-SCN-Bn-deferoxamine (DFO) and subsequently radiolabelled with [89 Zr]Zr-oxalate. The binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2 was tested in vitro on prostate (PC-3) and ovary adenocarcinoma (SK-OV-3) cell lines. The positron emission tomography/computed tomography (PET/CT) imaging and ex vivo biodistribution experiments were performed in PC-3 and SK-OV-3 xenografted mice. The in vitro experiments revealed the preserved binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2. The obtained ex vivo biodistribution data showed the uptake in PC-3 and SK-OV-3 tumours at about 8.7 ± 0.2 and 12.1 ± 1.6%ID/g, respectively. The tumour-to-muscle ratio for 1, 3 and 6 days post injection was 3.9, 5.5 and 5.12 for PC-3 and 6.0, 8.0 and 8.82 for SK-OV-3 tumours, respectively. PET/CT images showed high radioactivity accumulation in the tumours starting already on the first day after tracer administration. The obtained results proved the potency of [89 Zr]Zr-DFO-RAM to target and image VEGFR2-positive tumours in vivo.
Zobrazit více v PubMed
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. Nov 6 2019;77(9):1745-1770.
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. Mar 7 2019;176(6):1248-1264.
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. Jan 1999;13(1):9-22.
Paz K, Zhu Z. Development of angiogenesis inhibitors to vascular endothelial growth factor receptor 2. Current status and future perspective. Front Biosci. May 1 2005;10(1-3):1415-1439.
Janousek J, Barta P, Novy Z, Zilkova K, Trejtnar F. Antiangiogenic human monoclonal antibody ramucirumab radiolabelling: in vitro evaluation on VEGFR2-positive cell lines. Anticancer Res. Feb 2019;39(2):735-744.
Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol. Jun 2007;62(3):179-213.
Fontanella C, Ongaro E, Bolzonello S, Guardascione M, Fasola G, Aprile G. Clinical advances in the development of novel VEGFR2 inhibitors. Ann Transl Med. Dec 2014;2(12):123-132.
Clarke JM, Hurwitz HI. Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther. Aug 2013;13(8):1187-1196.
Miao HQ, Hu K, Jimenez X, et al. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2. Biochem Biophys Res Commun. Jun 23 2006;345(1):438-445.
Casak SJ, Fashoyin-Aje I, Lemery SJ, et al. FDA approval summary: Ramucirumab for gastric cancer. Clin Cancer Res. Aug 1 2015;21(15):3372-3376.
Syed YY. Ramucirumab: a review in hepatocellular carcinoma. Drugs. Feb 2020;80(3):315-322.
Verdaguer H, Tabernero J, Macarulla T. Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Ther Adv Med Oncol. May 2016;8(3):230-242.
Orlova A, Wallberg H, Stone-Elander S, Tolmachev V. On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model. J Nucl Med. Mar 2009;50(3):417-425.
Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv. Feb 2018;15(2):185-196.
Moek KL, Giesen D, Kok IC, et al. Theranostics using antibodies and antibody-related therapeutics. J Nucl Med. Sep 2017;58(Suppl 2):83S-90S.
Ballinger JR. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol. Nov 2018;91(1091):20170969.
Williams SP. Tissue distribution studies of protein therapeutics using molecular probes: molecular imaging. AAPS J. Sep 2012;14(3):389-399.
Luo H, England CG, Graves SA, et al. PET imaging of VEGFR-2 expression in lung cancer with 64Cu-labeled ramucirumab. J Nucl Med. Feb 2016;57(2):285-290.
Li M, Jiang D, Barnhart TE, et al. Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab. Am J Cancer Res. 2019;9(9):2037-2046.
Vosjan MJ, Perk LR, Visser GW, et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc. Apr 2010;5(4):739-743.
Brady ED, Chong HS, Milenic DE, Brechbiel MW. Development of a spectroscopic assay for bifunctional ligand-protein conjugates based on copper. Nucl Med Biol. Aug 2004;31(6):795-802.
Bigott-Hennkens HM, Dannoon S, Lewis MR, Jurisson SS. In vitro receptor binding assays: general methods and considerations. Q J Nucl Med Mol Imaging. Sep 2008;52(3):245-253.
Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. Oct 1985;150(1):76-85.
Liapis V, Tieu W, Rudd SE, et al. Improved non-invasive positron emission tomographic imaging of chemotherapy-induced tumor cell death using Zirconium-89-labeled APOMAB®. EJNMMI Radiopharm Chem. Nov 17 2020;5(1):27-41.
Nguyen-Nielsen M, Borre M. Diagnostic and therapeutic strategies for prostate cancer. Semin Nucl Med. Nov 2016;46(6):484-490.
Dong X, Men X, Zhang W, Lei P. Advances in tumor markers of ovarian cancer for early diagnosis. Indian J Cancer. Mar 2014;51(Suppl 3):e72-e76.
Barta P, Malmberg J, Melicharova L, et al. Protein interactions with HER-family receptors can have different characteristics depending on the hosting cell line. Int J Oncol. May 2012;40(5):1677-1682.
Franklin MC, Navarro EC, Wang Y, et al. The structural basis for the function of two anti-VEGF receptor 2 antibodies. Structure. Aug 10 2011;19(8):1097-1107.
Bee C, Abdiche YN, Pons J, Rajpal A. Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum. PLoS One. 2013;8(11):e80501.
Smith A, Zangemeister-Wittke U, Waibel R, Schenker T, Schubiger PA, Stahel RA. A comparison of 67Cu- and 131I-labelled forms of monoclonal antibodies SEN7 and SWA20 directed against small-cell lung cancer. Int J Cancer Suppl. 1994;8:43-48.
Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. Jan 7 2014;43(1):260-290.
Synthesis, Biological Evaluation, and In Silico Modeling of N-Substituted Quinoxaline-2-Carboxamides