Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test

. 2021 Apr 21 ; 11 (1) : 8599. [epub] 20210421

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33883635
Odkazy

PubMed 33883635
PubMed Central PMC8060323
DOI 10.1038/s41598-021-88069-y
PII: 10.1038/s41598-021-88069-y
Knihovny.cz E-zdroje

This study examined the effects of a nine-week intervention of four different high-intensity training modalities [high-intensity functional training (HIFT), high-intensity interval training (HIIT), high-intensity power training (HIPT), and high-intensity endurance training (HIET)] on the resting concentration of brain-derived neurotropic factor (BDNF). In addition, we evaluated the BDNF responses to Graded Exercise Test (GXT) and Wingate Anaerobic Test (WAnT) in men. Thirty-five healthy individuals with body mass index 25.55 ± 2.35 kg/m2 voluntarily participated in this study and were randomly assigned into four training groups. During nine-weeks they completed three exercise sessions per week for one-hour. BDNF was analyzed before and after a GXT and WAnT in two stages: (stage 0-before training and stage 9-after nine weeks of training). At stage 0, an increase in BDNF concentration was observed in HIFT (33%; p < 0.05), HIPT (36%; p < 0.05) and HIIT (38%; p < 0.05) after GXT. Even though HIET showed an increase in BDNF (10%) this was not statistically significant (p > 0.05). At stage 9, higher BDNF levels after GXT were seen only for the HIFT (30%; p < 0.05) and HIIT (18%; p < 0.05) groups. Reduction in BDNF levels were noted after the WAnT in stage 0 for HIFT (- 47%; p < 0.01), HIPT (- 49%; p < 0.001), HIET (- 18%; p < 0.05)], with no changes in the HIIT group (- 2%). At stage 9, BDNF was also reduced after WAnT, although these changes were lower compared to stage 0. The reduced level of BDNF was noted in the HIFT (- 28%; p < 0.05), and HIPT (- 19%;p < 0.05) groups. Additionally, all groups saw an improvement in VO2max (8%; p < 0.001), while BDNF was also correlated with lactate and minute ventilation and selected WAnT parameters. Our research has shown that resting values of BDNF after nine weeks of different forms of high-intensity training (HIT) have not changed or were reduced. Resting BDNF measured at 3th (before GXT at stage 9) and 6th day after long lasting HITs (before WAnT at stage 9) did not differed (before GXT), but in comparison to the resting value before WAnT at the baseline state, was lower in three groups. It appears that BDNF levels after one bout of exercise is depended on duration time, intensity and type of test/exercise.

Zobrazit více v PubMed

World Health Organization. Physical Activity. https://www.who.int/news-room/fact-sheets/detail/physical-activity (Accessed 27 Sep 2020).

Cotman CW, Berchtold NC. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25:295–301. doi: 10.1016/S0166-2236(02)02143-4. PubMed DOI

Van Praag H. Exercise and the brain: Something to chew on. Trends Neurosci. 2009;32:283–290. doi: 10.1016/j.tins.2008.12.007. PubMed DOI PMC

Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health. Genes. 2019;10:720. doi: 10.3390/genes10090720. PubMed DOI PMC

Griffin ÉW, Bechara RG, Birch AM, Kelly Á. Exercise enhances hippocampal-dependent learning in the rat: Evidence for a BDNF-related mechanism. Hippocampus. 2009;19:973–980. doi: 10.1002/hipo.20631. PubMed DOI

Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol. Metab. 2009;20:95–99. doi: 10.1016/j.tem.2008.12.002. PubMed DOI

Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007. PubMed DOI

Pedersen BK. The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. J. Physiol. 2009;587:5559–5568. doi: 10.1113/jphysiol.2009.179515. PubMed DOI PMC

Lafenetre P, Leske O, Wahle P, Heumann R. The beneficial effects of physical activity on impaired adult neurogenesis and cognitive performance. Front. Neurosci. 2011;5:51. doi: 10.3389/fnins.2011.00051. PubMed DOI PMC

Boström P, et al. PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463. doi: 10.1038/nature10777. PubMed DOI PMC

Zhang JC, Yao W, Hashimoto K. Brain-derived neurotrophic Factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr. Neuropharmacol. 2016;14:721–731. doi: 10.2174/1570159X14666160119094646. PubMed DOI PMC

Rasmussen P, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009;94:1062–1069. doi: 10.1113/expphysiol.2009.048512. PubMed DOI

Matthews VB, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetol. 2009;52:1409–1418. doi: 10.1007/s00125-009-1364-1. PubMed DOI

Yang X, Brobst D, Chan WS. Muscle-generated BDNF is a sexually dimorphic myokine that controls metabolic flexibility. Sci. Signal. 2019 doi: 10.1126/scisignal.aau1468. PubMed DOI PMC

Kerschensteiner M, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J. Exp. Med. 1999;189:865–870. doi: 10.1084/jem.189.5.865. PubMed DOI PMC

Nakahashi T, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 2000;470:113–117. doi: 10.1016/S0014-5793(00)01302-8. PubMed DOI

Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37:1553–1561. doi: 10.1016/S0028-3908(98)00141-5. PubMed DOI

Severinsen MCK, Pedersen BK. Muscle–organ crosstalk: the emerging roles of myokines. Endocrine Rev. 2020;41:594–609. doi: 10.1210/endrev/bnaa016. PubMed DOI PMC

Nakagomi A, et al. Role of the central nervous system and adipose tissue BDNF/TrkB axes in metabolic regulation. Npj Aging Mech Dis. 2015;1:15009. doi: 10.1038/npjamd.2015.9. PubMed DOI PMC

Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int. J. Mol. Sci. 2018;19:3650. doi: 10.3390/ijms19113650. PubMed DOI PMC

Noble EE, Billington CJ, Kotz KM, Wang CF. The lighter side of BDNF. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R1053–R1069. doi: 10.1152/ajpregu.00776.2010. PubMed DOI PMC

Sasi M, et al. Neurobiology of local and intercellular BDNF signaling. Pflug. Archiv. Eur. J. Physiol. 2017;469:1–18. doi: 10.1007/s00424-016-1918-2. PubMed DOI PMC

Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019 doi: 10.3389/fncel.2019.00363. PubMed DOI PMC

Radecki DT, Brown LM, Martinez J, Teyler TJ. BDNF protects against stress-induced impairments in spatial learning and memory and LTP. Hippocampus. 2005;15:246–253. doi: 10.1002/hipo.20048. PubMed DOI

Minichiello L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009;10:850–860. doi: 10.1038/nrn2738. PubMed DOI

Phillips C. Brain-derived neurotrophic factor. Depression and physical activity: Making the neuroplastic connection. Neural Plast. 2017 doi: 10.1155/2017/7260130. PubMed DOI PMC

Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 2014;220:223–250. doi: 10.1007/978-3-642-45106-5_9. PubMed DOI

Gu X, Ding F, Yang Y, Liu J. Tissue engineering in peripheral nerve regeneration. In: So KF, Xu XM, editors. Neural Regeneration. Cambridge: Academic Press; 2015. pp. 73–99.

Clow C, Jasmin BJ. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeletal muscle regeneration. Mol. Biol. Cell. 2010;21:2182–2190. doi: 10.1091/mbc.e10-02-0154. PubMed DOI PMC

Pedersen K, et al. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 2009;94:1153–1160. doi: 10.1113/expphysiol.2009.048561. PubMed DOI

Sornelli MF, Chaldakov GN, Tonchev AB, Aloe L. NGF and BDNF: From nerves to adipose tissue, from neurokines to metabokines. Riv Psichiatr. 2009;44:79–87. PubMed

Sornelli MF, Chaldakov GN, Aloe L. Brain derived neurotrophic factor: A new adipokine. Biomed. Rev. 2007;18:85–88. doi: 10.14748/bmr.v18.72. DOI

Sornelli F, Fiore M, Chaldakov GN, Aloe L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: Results from experimental stress and diabetes. Gen. Physiol. Biophys. 2009;28:179–183. PubMed

Eadie BD, Redila VA, Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 2005;486:39–47. doi: 10.1002/cne.20493. PubMed DOI

Wrann CD, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18:649–659. doi: 10.1016/j.cmet.2013.09.008. PubMed DOI PMC

Heyman E, et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology. 2012;37:844–851. doi: 10.1016/j.psyneuen.2011.09.017. PubMed DOI

Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The impact of high-intensity interval training on brain derived neurotrophic factor in brain: A mini-review. Front. Neurosci. 2018;12:839. doi: 10.3389/fnins.2018.00839. PubMed DOI PMC

Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp. Neurol. 1995;131:229–238. doi: 10.1016/0014-4886(95)90045-4. PubMed DOI

Müller P, Duderstadt Y, Lessmann V, Müller NG. Lactate and BDNF: Key mediators of exercise induced neuroplasticity? J. Clin. Med. 2020;9:1136. doi: 10.3390/jcm9041136. PubMed DOI PMC

Feito Y, Brown C, Olmos AA. Content analysis of the high-intensity functional training literature: a look at the past and directions for the future. Hum. Mov. 2019;20:1–15. doi: 10.5114/hm.2019.81020. DOI

Adami PE, Rocchi JE, Melke N, Macaluso A. Physiological profile of high intensity functional training athletes. J. Hum. Sport Exer. 2020 doi: 10.14198/jhse.2021.163.16. PubMed DOI

Feito Y, Heinrich KM, Butcher SJ, Poston WS. High-intensity functional training (HIFT): Definition and research implications for improved fitness. Sports. 2018;6:76. doi: 10.3390/sports6030076. PubMed DOI PMC

Cosgrove SJ, Crawford DA, Heinrich KM. Multiple fitness improvements found after 6-months of high intensity functional training. Sports. 2019;7:203. doi: 10.3390/sports7090203. PubMed DOI PMC

Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013;43:313–338. doi: 10.1007/s40279-013-0029-x. PubMed DOI

Souza D, Barbalho M, Gentil P. The impact of resistance training volume on muscle size and lean body mass: To infinity and beyond? Hum. Mov. 2020;21:18–29. doi: 10.5114/hm.2020.94199. DOI

Fredrick C, et al. Effects of high-intensity resistance training on untrained older men. I. strength, cardiovascular, and metabolic responses. J. Geront. 2000;55:B336–B346. doi: 10.1093/gerona/55.7.B336. PubMed DOI

Vesterinen V, et al. Individual endurance training prescription with heart rate variability. Med. Sci. Sports Exerc. 2016;48:1347–1354. doi: 10.1249/MSS.0000000000000910. PubMed DOI

Vesterinen V. Predictors of individual adaptation to high-volume or high-intensity endurance training in recreational endurance runners. Scand. J. Med. Sci. Sports. 2016;26:885–893. doi: 10.1111/sms.12530. PubMed DOI

Nummela A, Hynynen E, Kaikkonen P, Rusko H. High-intensity endurance training increases nocturnal heart rate variability in sedentary participants. Biol. Sport. 2016;33:7–13. PubMed PMC

Rojas Vega S, et al. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121:59–65. doi: 10.1016/j.brainres.2006.08.105. PubMed DOI

Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exer. 2007;39:728. doi: 10.1249/mss.0b013e31802f04c7. PubMed DOI

Schmolesky MT, Webb DL, Hansen RA. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sports Sci. Med. 2013;12:502. PubMed PMC

Huang SC, et al. Modified high-intensity interval training increases peak cardiac power output in patients with heart failure. Eur. J. Appl. Physiol. 2014;114:1853–1862. doi: 10.1007/s00421-014-2913-y. PubMed DOI

Schmidt-Kassow M, et al. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreports. 2012;23:889–893. doi: 10.1097/WNR.0b013e32835946ca. PubMed DOI

Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015;119:1363–1373. doi: 10.1152/japplphysiol.00126.2015. PubMed DOI

Renteria I, et al. Short-term high-intensity interval training increased systemic brain-derived neurotrophic factor (BDNF) in healthy women. Eur. J. Sport Sci. 2019;20:1–9. doi: 10.1080/17461391.2019.1650120. PubMed DOI

Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF) Neurosci. Let. 2010;479:161–165. doi: 10.1016/j.neulet.2010.05.058. PubMed DOI

Rojas Vega S, Knicker A, Hollmann W, Bloch W, Strüder HK. Effect of resistance exercise on serum levels of growth factors in humans. Horm. Metab. Res. 2010;42:982–986. doi: 10.1055/s-0030-1267950. PubMed DOI

Goekint M, et al. Strength training does not influence serum brain-derived neurotrophic factor. Eur. J. Appl. Physiol. 2010;110:285–293. doi: 10.1007/s00421-010-1461-3. PubMed DOI

Correia PR. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics. 2010;65:1123–1126. doi: 10.1590/S1807-59322010001100012. PubMed DOI PMC

Figueiredo C, et al. Influence of acute and chronic high-intensity intermittent aerobic plus strength exercise on BDNF, lipid and autonomic parameters. J. Sports Sci. Med. 2019;18:359. PubMed PMC

Nofuji Y, et al. Decreased serum brain-derived neurotrophic factor in trained men. Neurosci. Let. 2008;437:29–32. doi: 10.1016/j.neulet.2008.03.057. PubMed DOI

Nofuji Y, et al. Different circulating brain-derived neurotrophic factor responses to acute exercise between physically active and sedentary subjects. J. Sports Sci. Med. 2012;11:83. PubMed PMC

Hebisz P, Hebisz R, Murawska-Ciałowicz E, Zatoń M. Changes in exercise capacity and serum BDNF following long-term sprint interval training in well-trained cyclists. Appl. Physiol. Nutr. Metab. 2018;44:499–506. doi: 10.1139/apnm-2018-0427. PubMed DOI

Murawska-Cialowicz E, Wojna J, Zuwala-Jagiello J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after Wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015;66:811–821. PubMed

Hang, S. Assessment of peripheral BNDF levels over 30 days. HSU theses and projects 115. https://digitalcommons.humboldt.edu/etd/115. (2018).

Cain SW. Circadian rhythms in plasma brain-derived neurotrophic factor differ in men and women. J. Biol. Rhythms. 2017;32:75–82. doi: 10.1177/0748730417693124. PubMed DOI

Begliuomini S, Lenzi E, Ninni F, et al. Plasma brain-derived neurotrophic factor daily variations in men: Correlation with cortisol circadian rhythm. J. Endocrinol. 2008;197:429–435. doi: 10.1677/JOE-07-0376. PubMed DOI

Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc. Sport Sci. Rev. 2008;36:58–63. doi: 10.1097/JES.0b013e318168ec1f. PubMed DOI

Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume; high-intensity interval training in health and disease. J. Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725. PubMed DOI PMC

Castro F, Aquino R, Júnior J, Gonçalves L, Puggina E. Strength training with vascular occlusion: A review of possible adaptive mechanisms. Hum. Mov. 2017;18:3–14.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J. Physiol. 2010;588:1011–1022. doi: 10.1113/jphysiol.2009.181743. PubMed DOI PMC

Nalbandian M, Takeda M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology. 2016;5:38. doi: 10.3390/biology5040038. PubMed DOI PMC

Van Hall G, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29:1121–1129. doi: 10.1038/jcbfm.2009.35. PubMed DOI

El Hayek L, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF) J Neurosci. 2019;39:2369–2382. PubMed PMC

Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:1303–1310. doi: 10.1152/ajpregu.00538.2010. PubMed DOI

Summermatter S, Santos G, Perez-Schindler J, Handschin C. Skeletal muscle PGC-1alpha controls whole-body lactate homeostasis through estrogen-related receptor alpha-dependent activation of LDH B and repression of LDH A. Proc. Natl. Acad Sci. USA. 2013;110:8738–8743. doi: 10.1073/pnas.1212976110. PubMed DOI PMC

Nuvagah Forti L. High versus low load resistance training: The effect of 24 weeks detraining on serum brain derived-neurotrophic factor (BDNF) in older adults. J. Frailty Aging. 2017;6:53–58. PubMed

Enette L, et al. Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer’s disease: A randomized controlled trial. Eur. Rev. Aging Phys. Activ. 2020;17:2–16. doi: 10.1186/s11556-019-0234-1. PubMed DOI PMC

Nicolini C, et al. No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males. Physiol. Rep. 2019 doi: 10.14814/phy2.14140. PubMed DOI PMC

Glud M, Christiansen T, Larsen LH, Richelsen B, Bruun JM. Changes in circulating BDNF in relation to sex, diet, and exercise: A 12-week randomized controlled study in overweight and obese participants. J Obes. 2019 doi: 10.1155/2019/4537274. PubMed DOI PMC

Lee IT, Wang JS, Fu CP, Lin SY, Sheu WH. Relationship between body weight and the increment in serum brain-derived neurotrophic factor after oral glucose challenge in men with obesity and metabolic syndrome: A prospective study. Medicine. 2016 doi: 10.1097/MD.0000000000005260. PubMed DOI PMC

Lommatzsch M, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging. 2005;26:115–123. doi: 10.1016/j.neurobiolaging.2004.03.002. PubMed DOI

Martinez Munoz IY, Camarillo Romero EDS, Garduno Garcia JJ. Irisin a novel metabolic biomarker: Present knowledge and future directions. Int. J. Endocrinol. 2018 doi: 10.1155/2018/7816806. PubMed DOI PMC

Benedini S, et al. Irisin: A potential link between physical exercise and metabolism—an observational study in differently trained subjects, from elite athletes to sedentary people. J. Diabetes Res. 2017 doi: 10.1155/2017/1039161. PubMed DOI PMC

Bus BAA. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology. 2011;36:228–239. doi: 10.1016/j.psyneuen.2010.07.013. PubMed DOI

Molendijk ML. Serum BDNF concentrations show strong seasonal variation and correlations with the amount of ambient sunlight. PLoS ONE. 2012 doi: 10.1371/journal.pone.0048046. PubMed DOI PMC

Nair A, Vaidya VA. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood? J. Biosci. 2006;31:423–434. doi: 10.1007/BF02704114. PubMed DOI PMC

Finkbeiner S, et al. CREB: A major mediator of neuronal neurotrophin responses. Cell Press. 1997;19:1031–1047. PubMed

Jiang DG. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress. Neural. Regen. Res. 2016;11:1471–1479. doi: 10.4103/1673-5374.191222. PubMed DOI PMC

Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007;10:1089–1093. doi: 10.1038/nn1971(. PubMed DOI

Jin Y, Sun LH, Yang W, Cui RJ, Xu SB. The Role of BDNF in the neuroimmune axis regulation of mood disorders. Front. Neurol. 2019;10:515. doi: 10.3389/fneur.2019.00515. PubMed DOI PMC

Spada TC, et al. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLoS ONE. 2018 doi: 10.1371/journal.pone.0205791. PubMed DOI PMC

Bakovic D. The effects of low-dose epinephrine infusion on spleen size, central and hepatic circulation and circulating platelets. Clin. Physiol. Funct. Imaging. 2013;33:30–37. doi: 10.1111/j.1475-097X.2012.01156.x. PubMed DOI

Heber S, Volf I. Effects of physical (in)activity on platelet function. BioMed Res. Int. 2015 doi: 10.1155/2015/16507. PubMed DOI PMC

Beck WR, Scariot PP, Gobatto CA. Primary and secondary thrombocytosis induced by exercise and environmental luminosity. Bratisl. Lek. Listy. 2014;115:607–610. PubMed

Yamamoto H, Gurney ME. Human platelets contain brain: Derived neurotrophic factor. J. Neurosci. 1990;10:3469–3478. doi: 10.1523/JNEUROSCI.10-11-03469.1990. PubMed DOI PMC

Gejl AK. Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci. Rep. 2019;9:9655. doi: 10.1038/s41598-019-45976-5. PubMed DOI PMC

Chacón-Fernández P, et al. Brain-derived neurotrophic factor in megakaryocytes. J. Biol. Chem. 2016;291:9872–9881. doi: 10.1074/jbc.M116.720029. PubMed DOI PMC

Nurden AT. The biology of the platelet with special reference to inflammation, wound healing and immunity. Front Biosci. (Landmark Ed) 2018;23:726–751. doi: 10.2741/4613. PubMed DOI

Lotrich F. Inflammatory cytokines, growth factors, and depression. Curr. Pharm. Des. 2012;18:5920. doi: 10.2174/138161212803523680. PubMed DOI

Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: The astrocyte. J. Neuroimmune Pharmacol. 2013;8:824–839. doi: 10.1007/s11481-013-9480-6. PubMed DOI

Ciprya L, Tschakert G, Hofmann P. Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J. Sports Sci. Med. 2017;16:219–229. PubMed PMC

Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2001;32:53–73. doi: 10.2165/00007256-200232010-00003. PubMed DOI

de Assis GG, Gasanov YV. BDNF and cortisol integrative system—plasticity vs degeneration: Implications of the Val66Met polymorphism. Front. Neuroendocrinol. 2019;55:100784. doi: 10.1016/j.yfrne.2019.100784. PubMed DOI

Garcia-Suarez PC, Renteria I, Moncada-Jimenez J, Fry AC, Jimenez-Maldonado A. Systemic response of BDNF, lactate and cortisol to strenuous exercise modalities in healthy untrained women. Dose-Resp. I. J. 2020 doi: 10.1177/1559325820970818. PubMed DOI PMC

Verhovshek T, Cai Y, Osborne MC, Sengelaub DR. Androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. Endocrinology. 2009;151:253–261. doi: 10.1210/en.2009-1036. PubMed DOI PMC

de Assis GG, Hoffman JR, Gasanov EV. BDNF Val66Met Polymorphism, the allele-specific analysis by qRT-PCR: A novel protocol. Int. J. Med. Sci. 2020;17:3058–3064. doi: 10.7150/ijms.50643. PubMed DOI PMC

Ieraci A, Madaio AI, Mallei A, Lee FS, Popoli M. Brain-derived neurotrophic factor Val66Met human polymorphism impairs the beneficial exercise-induced neurobiological changes in mice. Neuropsychopharmacology. 2016;41:3070–3079. doi: 10.1038/npp.2016.120. PubMed DOI PMC

Murawska-Cialowicz E, et al. Effect of HIIT with Tabata protocol on serum irisin, physical performance, and body composition in men. Int. J. Environ. Res. Public Health. 2020;17:3589. doi: 10.3390/ijerph17103589. PubMed DOI PMC

Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE. 2014;9:e85276. doi: 10.1371/journal.pone.0085276. PubMed DOI PMC

Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake. A brief critique and recommendations for future research. Sports Med. 2007;37:1019–1028. doi: 10.2165/00007256-200737120-00002. PubMed DOI

Williams N. The Borg rating of perceived exertion (RPE) scale. Occup. Med. 2017;67:404–405. doi: 10.1093/occmed/kqx063. DOI

Foster C, et al. A new approach to monitoring exercise training. J. Proc. Natl. Acad. Sci. U.S.A. 2001;15:109–115. doi: 10.1519/00124278-200102000-00019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...