Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33883635
PubMed Central
PMC8060323
DOI
10.1038/s41598-021-88069-y
PII: 10.1038/s41598-021-88069-y
Knihovny.cz E-zdroje
- MeSH
- cvičení fyziologie MeSH
- dospělí MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- odpočinek fyziologie MeSH
- vysoce intenzivní intervalový trénink metody MeSH
- zátěžový test metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BDNF protein, human MeSH Prohlížeč
- mozkový neurotrofický faktor MeSH
This study examined the effects of a nine-week intervention of four different high-intensity training modalities [high-intensity functional training (HIFT), high-intensity interval training (HIIT), high-intensity power training (HIPT), and high-intensity endurance training (HIET)] on the resting concentration of brain-derived neurotropic factor (BDNF). In addition, we evaluated the BDNF responses to Graded Exercise Test (GXT) and Wingate Anaerobic Test (WAnT) in men. Thirty-five healthy individuals with body mass index 25.55 ± 2.35 kg/m2 voluntarily participated in this study and were randomly assigned into four training groups. During nine-weeks they completed three exercise sessions per week for one-hour. BDNF was analyzed before and after a GXT and WAnT in two stages: (stage 0-before training and stage 9-after nine weeks of training). At stage 0, an increase in BDNF concentration was observed in HIFT (33%; p < 0.05), HIPT (36%; p < 0.05) and HIIT (38%; p < 0.05) after GXT. Even though HIET showed an increase in BDNF (10%) this was not statistically significant (p > 0.05). At stage 9, higher BDNF levels after GXT were seen only for the HIFT (30%; p < 0.05) and HIIT (18%; p < 0.05) groups. Reduction in BDNF levels were noted after the WAnT in stage 0 for HIFT (- 47%; p < 0.01), HIPT (- 49%; p < 0.001), HIET (- 18%; p < 0.05)], with no changes in the HIIT group (- 2%). At stage 9, BDNF was also reduced after WAnT, although these changes were lower compared to stage 0. The reduced level of BDNF was noted in the HIFT (- 28%; p < 0.05), and HIPT (- 19%;p < 0.05) groups. Additionally, all groups saw an improvement in VO2max (8%; p < 0.001), while BDNF was also correlated with lactate and minute ventilation and selected WAnT parameters. Our research has shown that resting values of BDNF after nine weeks of different forms of high-intensity training (HIT) have not changed or were reduced. Resting BDNF measured at 3th (before GXT at stage 9) and 6th day after long lasting HITs (before WAnT at stage 9) did not differed (before GXT), but in comparison to the resting value before WAnT at the baseline state, was lower in three groups. It appears that BDNF levels after one bout of exercise is depended on duration time, intensity and type of test/exercise.
Department of Exercise Science and Sport Management Kennesaw State University Kennesaw USA
Department of Molecular Biology Gdansk University of Physical Education and Sport Gdańsk Poland
Department of Pharmaceutical Biochemistry Wroclaw Medical University Wrocław Poland
Escola Superior Desporto E Lazer Instituto Politécnico de Viana Do Castelo Viana do Castelo Portugal
Faculty of Physical Education and Sport Charles University Prague Czech Republic
Instituto de Telecomunicações Delegação da Covilhã Covilhã Portugal
Mossakowski Medical Research Centre PAN Warsaw Poland
Physiology and Biochemistry Department University School of Physical Education Wrocław Poland
Zobrazit více v PubMed
World Health Organization. Physical Activity. https://www.who.int/news-room/fact-sheets/detail/physical-activity (Accessed 27 Sep 2020).
Cotman CW, Berchtold NC. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25:295–301. doi: 10.1016/S0166-2236(02)02143-4. PubMed DOI
Van Praag H. Exercise and the brain: Something to chew on. Trends Neurosci. 2009;32:283–290. doi: 10.1016/j.tins.2008.12.007. PubMed DOI PMC
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health. Genes. 2019;10:720. doi: 10.3390/genes10090720. PubMed DOI PMC
Griffin ÉW, Bechara RG, Birch AM, Kelly Á. Exercise enhances hippocampal-dependent learning in the rat: Evidence for a BDNF-related mechanism. Hippocampus. 2009;19:973–980. doi: 10.1002/hipo.20631. PubMed DOI
Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol. Metab. 2009;20:95–99. doi: 10.1016/j.tem.2008.12.002. PubMed DOI
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007. PubMed DOI
Pedersen BK. The diseasome of physical inactivity–and the role of myokines in muscle–fat cross talk. J. Physiol. 2009;587:5559–5568. doi: 10.1113/jphysiol.2009.179515. PubMed DOI PMC
Lafenetre P, Leske O, Wahle P, Heumann R. The beneficial effects of physical activity on impaired adult neurogenesis and cognitive performance. Front. Neurosci. 2011;5:51. doi: 10.3389/fnins.2011.00051. PubMed DOI PMC
Boström P, et al. PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463. doi: 10.1038/nature10777. PubMed DOI PMC
Zhang JC, Yao W, Hashimoto K. Brain-derived neurotrophic Factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr. Neuropharmacol. 2016;14:721–731. doi: 10.2174/1570159X14666160119094646. PubMed DOI PMC
Rasmussen P, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009;94:1062–1069. doi: 10.1113/expphysiol.2009.048512. PubMed DOI
Matthews VB, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetol. 2009;52:1409–1418. doi: 10.1007/s00125-009-1364-1. PubMed DOI
Yang X, Brobst D, Chan WS. Muscle-generated BDNF is a sexually dimorphic myokine that controls metabolic flexibility. Sci. Signal. 2019 doi: 10.1126/scisignal.aau1468. PubMed DOI PMC
Kerschensteiner M, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J. Exp. Med. 1999;189:865–870. doi: 10.1084/jem.189.5.865. PubMed DOI PMC
Nakahashi T, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 2000;470:113–117. doi: 10.1016/S0014-5793(00)01302-8. PubMed DOI
Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37:1553–1561. doi: 10.1016/S0028-3908(98)00141-5. PubMed DOI
Severinsen MCK, Pedersen BK. Muscle–organ crosstalk: the emerging roles of myokines. Endocrine Rev. 2020;41:594–609. doi: 10.1210/endrev/bnaa016. PubMed DOI PMC
Nakagomi A, et al. Role of the central nervous system and adipose tissue BDNF/TrkB axes in metabolic regulation. Npj Aging Mech Dis. 2015;1:15009. doi: 10.1038/npjamd.2015.9. PubMed DOI PMC
Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int. J. Mol. Sci. 2018;19:3650. doi: 10.3390/ijms19113650. PubMed DOI PMC
Noble EE, Billington CJ, Kotz KM, Wang CF. The lighter side of BDNF. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R1053–R1069. doi: 10.1152/ajpregu.00776.2010. PubMed DOI PMC
Sasi M, et al. Neurobiology of local and intercellular BDNF signaling. Pflug. Archiv. Eur. J. Physiol. 2017;469:1–18. doi: 10.1007/s00424-016-1918-2. PubMed DOI PMC
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019 doi: 10.3389/fncel.2019.00363. PubMed DOI PMC
Radecki DT, Brown LM, Martinez J, Teyler TJ. BDNF protects against stress-induced impairments in spatial learning and memory and LTP. Hippocampus. 2005;15:246–253. doi: 10.1002/hipo.20048. PubMed DOI
Minichiello L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009;10:850–860. doi: 10.1038/nrn2738. PubMed DOI
Phillips C. Brain-derived neurotrophic factor. Depression and physical activity: Making the neuroplastic connection. Neural Plast. 2017 doi: 10.1155/2017/7260130. PubMed DOI PMC
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 2014;220:223–250. doi: 10.1007/978-3-642-45106-5_9. PubMed DOI
Gu X, Ding F, Yang Y, Liu J. Tissue engineering in peripheral nerve regeneration. In: So KF, Xu XM, editors. Neural Regeneration. Cambridge: Academic Press; 2015. pp. 73–99.
Clow C, Jasmin BJ. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeletal muscle regeneration. Mol. Biol. Cell. 2010;21:2182–2190. doi: 10.1091/mbc.e10-02-0154. PubMed DOI PMC
Pedersen K, et al. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 2009;94:1153–1160. doi: 10.1113/expphysiol.2009.048561. PubMed DOI
Sornelli MF, Chaldakov GN, Tonchev AB, Aloe L. NGF and BDNF: From nerves to adipose tissue, from neurokines to metabokines. Riv Psichiatr. 2009;44:79–87. PubMed
Sornelli MF, Chaldakov GN, Aloe L. Brain derived neurotrophic factor: A new adipokine. Biomed. Rev. 2007;18:85–88. doi: 10.14748/bmr.v18.72. DOI
Sornelli F, Fiore M, Chaldakov GN, Aloe L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: Results from experimental stress and diabetes. Gen. Physiol. Biophys. 2009;28:179–183. PubMed
Eadie BD, Redila VA, Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 2005;486:39–47. doi: 10.1002/cne.20493. PubMed DOI
Wrann CD, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18:649–659. doi: 10.1016/j.cmet.2013.09.008. PubMed DOI PMC
Heyman E, et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology. 2012;37:844–851. doi: 10.1016/j.psyneuen.2011.09.017. PubMed DOI
Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The impact of high-intensity interval training on brain derived neurotrophic factor in brain: A mini-review. Front. Neurosci. 2018;12:839. doi: 10.3389/fnins.2018.00839. PubMed DOI PMC
Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp. Neurol. 1995;131:229–238. doi: 10.1016/0014-4886(95)90045-4. PubMed DOI
Müller P, Duderstadt Y, Lessmann V, Müller NG. Lactate and BDNF: Key mediators of exercise induced neuroplasticity? J. Clin. Med. 2020;9:1136. doi: 10.3390/jcm9041136. PubMed DOI PMC
Feito Y, Brown C, Olmos AA. Content analysis of the high-intensity functional training literature: a look at the past and directions for the future. Hum. Mov. 2019;20:1–15. doi: 10.5114/hm.2019.81020. DOI
Adami PE, Rocchi JE, Melke N, Macaluso A. Physiological profile of high intensity functional training athletes. J. Hum. Sport Exer. 2020 doi: 10.14198/jhse.2021.163.16. PubMed DOI
Feito Y, Heinrich KM, Butcher SJ, Poston WS. High-intensity functional training (HIFT): Definition and research implications for improved fitness. Sports. 2018;6:76. doi: 10.3390/sports6030076. PubMed DOI PMC
Cosgrove SJ, Crawford DA, Heinrich KM. Multiple fitness improvements found after 6-months of high intensity functional training. Sports. 2019;7:203. doi: 10.3390/sports7090203. PubMed DOI PMC
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013;43:313–338. doi: 10.1007/s40279-013-0029-x. PubMed DOI
Souza D, Barbalho M, Gentil P. The impact of resistance training volume on muscle size and lean body mass: To infinity and beyond? Hum. Mov. 2020;21:18–29. doi: 10.5114/hm.2020.94199. DOI
Fredrick C, et al. Effects of high-intensity resistance training on untrained older men. I. strength, cardiovascular, and metabolic responses. J. Geront. 2000;55:B336–B346. doi: 10.1093/gerona/55.7.B336. PubMed DOI
Vesterinen V, et al. Individual endurance training prescription with heart rate variability. Med. Sci. Sports Exerc. 2016;48:1347–1354. doi: 10.1249/MSS.0000000000000910. PubMed DOI
Vesterinen V. Predictors of individual adaptation to high-volume or high-intensity endurance training in recreational endurance runners. Scand. J. Med. Sci. Sports. 2016;26:885–893. doi: 10.1111/sms.12530. PubMed DOI
Nummela A, Hynynen E, Kaikkonen P, Rusko H. High-intensity endurance training increases nocturnal heart rate variability in sedentary participants. Biol. Sport. 2016;33:7–13. PubMed PMC
Rojas Vega S, et al. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121:59–65. doi: 10.1016/j.brainres.2006.08.105. PubMed DOI
Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exer. 2007;39:728. doi: 10.1249/mss.0b013e31802f04c7. PubMed DOI
Schmolesky MT, Webb DL, Hansen RA. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sports Sci. Med. 2013;12:502. PubMed PMC
Huang SC, et al. Modified high-intensity interval training increases peak cardiac power output in patients with heart failure. Eur. J. Appl. Physiol. 2014;114:1853–1862. doi: 10.1007/s00421-014-2913-y. PubMed DOI
Schmidt-Kassow M, et al. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreports. 2012;23:889–893. doi: 10.1097/WNR.0b013e32835946ca. PubMed DOI
Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015;119:1363–1373. doi: 10.1152/japplphysiol.00126.2015. PubMed DOI
Renteria I, et al. Short-term high-intensity interval training increased systemic brain-derived neurotrophic factor (BDNF) in healthy women. Eur. J. Sport Sci. 2019;20:1–9. doi: 10.1080/17461391.2019.1650120. PubMed DOI
Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF) Neurosci. Let. 2010;479:161–165. doi: 10.1016/j.neulet.2010.05.058. PubMed DOI
Rojas Vega S, Knicker A, Hollmann W, Bloch W, Strüder HK. Effect of resistance exercise on serum levels of growth factors in humans. Horm. Metab. Res. 2010;42:982–986. doi: 10.1055/s-0030-1267950. PubMed DOI
Goekint M, et al. Strength training does not influence serum brain-derived neurotrophic factor. Eur. J. Appl. Physiol. 2010;110:285–293. doi: 10.1007/s00421-010-1461-3. PubMed DOI
Correia PR. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics. 2010;65:1123–1126. doi: 10.1590/S1807-59322010001100012. PubMed DOI PMC
Figueiredo C, et al. Influence of acute and chronic high-intensity intermittent aerobic plus strength exercise on BDNF, lipid and autonomic parameters. J. Sports Sci. Med. 2019;18:359. PubMed PMC
Nofuji Y, et al. Decreased serum brain-derived neurotrophic factor in trained men. Neurosci. Let. 2008;437:29–32. doi: 10.1016/j.neulet.2008.03.057. PubMed DOI
Nofuji Y, et al. Different circulating brain-derived neurotrophic factor responses to acute exercise between physically active and sedentary subjects. J. Sports Sci. Med. 2012;11:83. PubMed PMC
Hebisz P, Hebisz R, Murawska-Ciałowicz E, Zatoń M. Changes in exercise capacity and serum BDNF following long-term sprint interval training in well-trained cyclists. Appl. Physiol. Nutr. Metab. 2018;44:499–506. doi: 10.1139/apnm-2018-0427. PubMed DOI
Murawska-Cialowicz E, Wojna J, Zuwala-Jagiello J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after Wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. 2015;66:811–821. PubMed
Hang, S. Assessment of peripheral BNDF levels over 30 days. HSU theses and projects 115. https://digitalcommons.humboldt.edu/etd/115. (2018).
Cain SW. Circadian rhythms in plasma brain-derived neurotrophic factor differ in men and women. J. Biol. Rhythms. 2017;32:75–82. doi: 10.1177/0748730417693124. PubMed DOI
Begliuomini S, Lenzi E, Ninni F, et al. Plasma brain-derived neurotrophic factor daily variations in men: Correlation with cortisol circadian rhythm. J. Endocrinol. 2008;197:429–435. doi: 10.1677/JOE-07-0376. PubMed DOI
Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc. Sport Sci. Rev. 2008;36:58–63. doi: 10.1097/JES.0b013e318168ec1f. PubMed DOI
Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume; high-intensity interval training in health and disease. J. Physiol. 2012;590:1077–1084. doi: 10.1113/jphysiol.2011.224725. PubMed DOI PMC
Castro F, Aquino R, Júnior J, Gonçalves L, Puggina E. Strength training with vascular occlusion: A review of possible adaptive mechanisms. Hum. Mov. 2017;18:3–14.
Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. J. Physiol. 2010;588:1011–1022. doi: 10.1113/jphysiol.2009.181743. PubMed DOI PMC
Nalbandian M, Takeda M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology. 2016;5:38. doi: 10.3390/biology5040038. PubMed DOI PMC
Van Hall G, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29:1121–1129. doi: 10.1038/jcbfm.2009.35. PubMed DOI
El Hayek L, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF) J Neurosci. 2019;39:2369–2382. PubMed PMC
Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:1303–1310. doi: 10.1152/ajpregu.00538.2010. PubMed DOI
Summermatter S, Santos G, Perez-Schindler J, Handschin C. Skeletal muscle PGC-1alpha controls whole-body lactate homeostasis through estrogen-related receptor alpha-dependent activation of LDH B and repression of LDH A. Proc. Natl. Acad Sci. USA. 2013;110:8738–8743. doi: 10.1073/pnas.1212976110. PubMed DOI PMC
Nuvagah Forti L. High versus low load resistance training: The effect of 24 weeks detraining on serum brain derived-neurotrophic factor (BDNF) in older adults. J. Frailty Aging. 2017;6:53–58. PubMed
Enette L, et al. Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer’s disease: A randomized controlled trial. Eur. Rev. Aging Phys. Activ. 2020;17:2–16. doi: 10.1186/s11556-019-0234-1. PubMed DOI PMC
Nicolini C, et al. No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males. Physiol. Rep. 2019 doi: 10.14814/phy2.14140. PubMed DOI PMC
Glud M, Christiansen T, Larsen LH, Richelsen B, Bruun JM. Changes in circulating BDNF in relation to sex, diet, and exercise: A 12-week randomized controlled study in overweight and obese participants. J Obes. 2019 doi: 10.1155/2019/4537274. PubMed DOI PMC
Lee IT, Wang JS, Fu CP, Lin SY, Sheu WH. Relationship between body weight and the increment in serum brain-derived neurotrophic factor after oral glucose challenge in men with obesity and metabolic syndrome: A prospective study. Medicine. 2016 doi: 10.1097/MD.0000000000005260. PubMed DOI PMC
Lommatzsch M, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol. Aging. 2005;26:115–123. doi: 10.1016/j.neurobiolaging.2004.03.002. PubMed DOI
Martinez Munoz IY, Camarillo Romero EDS, Garduno Garcia JJ. Irisin a novel metabolic biomarker: Present knowledge and future directions. Int. J. Endocrinol. 2018 doi: 10.1155/2018/7816806. PubMed DOI PMC
Benedini S, et al. Irisin: A potential link between physical exercise and metabolism—an observational study in differently trained subjects, from elite athletes to sedentary people. J. Diabetes Res. 2017 doi: 10.1155/2017/1039161. PubMed DOI PMC
Bus BAA. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology. 2011;36:228–239. doi: 10.1016/j.psyneuen.2010.07.013. PubMed DOI
Molendijk ML. Serum BDNF concentrations show strong seasonal variation and correlations with the amount of ambient sunlight. PLoS ONE. 2012 doi: 10.1371/journal.pone.0048046. PubMed DOI PMC
Nair A, Vaidya VA. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood? J. Biosci. 2006;31:423–434. doi: 10.1007/BF02704114. PubMed DOI PMC
Finkbeiner S, et al. CREB: A major mediator of neuronal neurotrophin responses. Cell Press. 1997;19:1031–1047. PubMed
Jiang DG. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress. Neural. Regen. Res. 2016;11:1471–1479. doi: 10.4103/1673-5374.191222. PubMed DOI PMC
Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007;10:1089–1093. doi: 10.1038/nn1971(. PubMed DOI
Jin Y, Sun LH, Yang W, Cui RJ, Xu SB. The Role of BDNF in the neuroimmune axis regulation of mood disorders. Front. Neurol. 2019;10:515. doi: 10.3389/fneur.2019.00515. PubMed DOI PMC
Spada TC, et al. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLoS ONE. 2018 doi: 10.1371/journal.pone.0205791. PubMed DOI PMC
Bakovic D. The effects of low-dose epinephrine infusion on spleen size, central and hepatic circulation and circulating platelets. Clin. Physiol. Funct. Imaging. 2013;33:30–37. doi: 10.1111/j.1475-097X.2012.01156.x. PubMed DOI
Heber S, Volf I. Effects of physical (in)activity on platelet function. BioMed Res. Int. 2015 doi: 10.1155/2015/16507. PubMed DOI PMC
Beck WR, Scariot PP, Gobatto CA. Primary and secondary thrombocytosis induced by exercise and environmental luminosity. Bratisl. Lek. Listy. 2014;115:607–610. PubMed
Yamamoto H, Gurney ME. Human platelets contain brain: Derived neurotrophic factor. J. Neurosci. 1990;10:3469–3478. doi: 10.1523/JNEUROSCI.10-11-03469.1990. PubMed DOI PMC
Gejl AK. Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci. Rep. 2019;9:9655. doi: 10.1038/s41598-019-45976-5. PubMed DOI PMC
Chacón-Fernández P, et al. Brain-derived neurotrophic factor in megakaryocytes. J. Biol. Chem. 2016;291:9872–9881. doi: 10.1074/jbc.M116.720029. PubMed DOI PMC
Nurden AT. The biology of the platelet with special reference to inflammation, wound healing and immunity. Front Biosci. (Landmark Ed) 2018;23:726–751. doi: 10.2741/4613. PubMed DOI
Lotrich F. Inflammatory cytokines, growth factors, and depression. Curr. Pharm. Des. 2012;18:5920. doi: 10.2174/138161212803523680. PubMed DOI
Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: The astrocyte. J. Neuroimmune Pharmacol. 2013;8:824–839. doi: 10.1007/s11481-013-9480-6. PubMed DOI
Ciprya L, Tschakert G, Hofmann P. Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J. Sports Sci. Med. 2017;16:219–229. PubMed PMC
Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2001;32:53–73. doi: 10.2165/00007256-200232010-00003. PubMed DOI
de Assis GG, Gasanov YV. BDNF and cortisol integrative system—plasticity vs degeneration: Implications of the Val66Met polymorphism. Front. Neuroendocrinol. 2019;55:100784. doi: 10.1016/j.yfrne.2019.100784. PubMed DOI
Garcia-Suarez PC, Renteria I, Moncada-Jimenez J, Fry AC, Jimenez-Maldonado A. Systemic response of BDNF, lactate and cortisol to strenuous exercise modalities in healthy untrained women. Dose-Resp. I. J. 2020 doi: 10.1177/1559325820970818. PubMed DOI PMC
Verhovshek T, Cai Y, Osborne MC, Sengelaub DR. Androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. Endocrinology. 2009;151:253–261. doi: 10.1210/en.2009-1036. PubMed DOI PMC
de Assis GG, Hoffman JR, Gasanov EV. BDNF Val66Met Polymorphism, the allele-specific analysis by qRT-PCR: A novel protocol. Int. J. Med. Sci. 2020;17:3058–3064. doi: 10.7150/ijms.50643. PubMed DOI PMC
Ieraci A, Madaio AI, Mallei A, Lee FS, Popoli M. Brain-derived neurotrophic factor Val66Met human polymorphism impairs the beneficial exercise-induced neurobiological changes in mice. Neuropsychopharmacology. 2016;41:3070–3079. doi: 10.1038/npp.2016.120. PubMed DOI PMC
Murawska-Cialowicz E, et al. Effect of HIIT with Tabata protocol on serum irisin, physical performance, and body composition in men. Int. J. Environ. Res. Public Health. 2020;17:3589. doi: 10.3390/ijerph17103589. PubMed DOI PMC
Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE. 2014;9:e85276. doi: 10.1371/journal.pone.0085276. PubMed DOI PMC
Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake. A brief critique and recommendations for future research. Sports Med. 2007;37:1019–1028. doi: 10.2165/00007256-200737120-00002. PubMed DOI
Williams N. The Borg rating of perceived exertion (RPE) scale. Occup. Med. 2017;67:404–405. doi: 10.1093/occmed/kqx063. DOI
Foster C, et al. A new approach to monitoring exercise training. J. Proc. Natl. Acad. Sci. U.S.A. 2001;15:109–115. doi: 10.1519/00124278-200102000-00019. PubMed DOI