An analysis of self-ignition of mine waste dumps in terms of environmental protection in industrial areas in Poland
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33893382
PubMed Central
PMC8065058
DOI
10.1038/s41598-021-88470-7
PII: 10.1038/s41598-021-88470-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aim of the paper was to work out a new comprehensive methodology to monitor thermal activity at mine waste dumps. The methodology was tested through monitoring thermal phenomena occurring in the areas of extractive waste dumping facilities located in the Upper Silesian Coal Basin, Poland. Within the framework of the study, a comparative analysis of three waste dumps was performed; the first two of them, which were not previously reclaimed, are in part thermally active, whereas the third one comprises one section which was partially reclaimed and another section which is still being operated. The research objective was to observe the changes of atmospheric emissions of Polycyclic Aromatic Hydrocarbons (PAHs) from the three selected facilities within the period of 21 months of constant monitoring. The novelty of the methodology of thermal activity monitoring at burning mine waste dumps consisted in the application advanced chemometrics methods. The collected data were analyzed by means of the Hierarchical Clustering Analysis supplemented with a color map of the experimental results. Based on the newly developed methodology, it was determined that thermal processes occur in all of the three analyzed sites. The non-reclaimed waste dumps characterize of intense thermal phenomena covering the majority of the studied area. It was also observed that the most intensive thermal activity occurs in the central sections of the dumps with temperature values reaching the level of 600 °C accompanied by high emissions of PAHs. In addition, the research results demonstrate that despite the reclamation processes, there are certain areas which still remain thermally active in one of the studied extractive waste dumps. This manifested itself by high measured concentrations of all the analyzed PAHs and locally increased surface temperatures which, however, did not exceed 200 °C; the majority of the areas of the reclaimed waste dump characterized of temperatures in the range of 20-30 °C.
CEET Nanotechnology Center VŠB TU Ostrava 17 listopadu 15 708 33 Ostrava Poruba Czech Republic
Central Mining Institute Pl Gwarków 1 40 166 Katowice Poland
Department of Environmental Monitoring Central Mining Institute Pl Gwarków 1 40 166 Katowice Poland
Zobrazit více v PubMed
Filippi M, Drahota P, Machovič V, Böhmová V, Mihaljevič M. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump. Sci. Total Environ. 2015;536:713–728. doi: 10.1016/j.scitotenv.2015.07.113. PubMed DOI
Skarżyńska KM. Odpady powęglowe i ich zastosowanie w inżynierii lądowej i wodnej. Wydawnictwo Akademii Rolniczej; 1997.
Civeira MS, Pinheiro RN, Gredilla A, De Vallejuelo SFO, Oliveira MLS, Ramos CG, Taffarel SR, Kautzmann RM, Madariaga JM, Silva LFO. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire. Sci. Total Environ. 2016;544:892–900. doi: 10.1016/j.scitotenv.2015.12.026. PubMed DOI
Romero A, González I, Martín JM, Vázquez MA, Ortiz P. Risk assessment of particle dispersion and trace element contamination from mine-waste dumps. Environ. Geochem. Health. 2015;37:273–286. doi: 10.1007/s10653-014-9645-0. PubMed DOI
Gupta AK, Paul B. A review on utilization of coal mine overburden dump waste as underground mine filling material: A sustainable approach of mining. Int. J. Mining Miner. Eng. 2015;6:172–186. doi: 10.1504/IJMME.2015.070380. DOI
Ciesielczuk J, Misz-Kennan M, Hower JC, Fabiańska M. Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (Upper Silesia, Poland) Int. J. Coal Geol. 2014;127:42–55. doi: 10.1016/j.coal.2014.02.007. DOI
Pasariello B, Giuliano V, Quaresima S, Barbaro M, Caroli S, Forte G, Carelli G, Iavicoli I. Evaluation of the environmental contamination at abandoned mining site. Microchem. J. 2002;73:245–250. doi: 10.1016/S0026-265X(02)00069-3. DOI
Durucan S, Korre A, Muñoz-Melendez G. Mining life cycle modelling: A cradle-to-gate approach to environmental management in the minerals industry. J. Clean. Prod. 2006;14:1057–1070. doi: 10.1016/j.jclepro.2004.12.021. DOI
Steiakakis E, Kavouridis K, Monopolis D. Large scale failure of the external waste dump at the “South Field” lignite mine, Northern Greece. Eng. Geol. 2009;104:269–279. doi: 10.1016/j.enggeo.2008.11.008. DOI
Zengxiang L, Meifeng C. Study on methods of environmental restoration of a mine in transition from open-pit to underground mining. In: Lee W, editor. 2012 Asia Pacific Conference on Environmental Science and Technology (Kuala Lumpur, Malaysia) Information Engineering Research Institute; 2012. pp. 551–555.
Popovic V, Miljkovic JŽ, Subic J, Jean-Vasile A, Adrian N, Nicolaescu E. Sustainable land management in mining areas in Serbia and Romania. Sustainability. 2015;7:11857–11877. doi: 10.3390/su70911857. DOI
Hudson-Edwards KA, Dold B. Mine waste characterization, management and remediation. Minerals. 2015;5:82–85. doi: 10.3390/min5010082. DOI
European Commission 2019. Development of a guidance document on best practices in the Extractive Waste Management Plans Circular Economy Action. Available from: https://ec.europa.eu/environment/waste/mining/pdf/guidance_extractive_waste.pdf [accessed Oct 27 2020].
Smoliński A, Drobek L, Dombek V, Bąk A. Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps. Chemosphere. 2016;162:189–198. doi: 10.1016/j.chemosphere.2016.07.086. PubMed DOI
Misz M, Fabiańska M, Ćmiel S. Organic components in thermally altered coal waste: Preliminary petrographic and geochemical investigations. Int. J. Coal Geol. 2007;71:405–424. doi: 10.1016/j.coal.2006.08.009. DOI
Smoliński A, Kuna-Gwoździewicz P, Łączny MJ, Bąk A. Study of the polycyclic aromatic hydrocarbons content in gas released from burning mine waste dump. Acta Chromatogr. 2007;27:239–254. doi: 10.1556/AChrom.27.2015.2.3. DOI
Gogola K, Rogala T, Magdziarczyk M, Smoliński A. The mechanisms of endogenous fires occurring in extractive waste dumping facilities. Sustainability. 2020;12:2856. doi: 10.3390/su12072856. DOI
Chang KF, Fang GC, Chen JC, Wu YS. Atmospheric polycyclic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environ. Pollut. 2006;142:388–396. doi: 10.1016/j.envpol.2005.09.025. PubMed DOI
Fang GC, Wu YS, Fu PPC, Yang IL, Chen MH. Polycyclic aromatic hydrocarbons in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere. 2004;54:443–452. doi: 10.1016/S0045-6535(03)00706-9. PubMed DOI
Jendruś R. Environmental protection in industrial areas and applying thermal analysis to coal dumps. Pol. J. Environ. Stud. 2017;26:137–146. doi: 10.15244/pjoes/64743. DOI
Pan R, Yu M, Lu L. Experimental study on explosive mechanism of spontaneous combustion gangue dump. J. Coal Sci. Eng. (China) 2009;29:321–329.
Falcon RM. Spontaneous combustion of the organic matter in discards from the Witbank coalfield. J. S. Afr. I. Min. Metall. 1986;86:243–250.
Querol X, Izquierdo M, Monfort E, Alvarez E, Font O, Moreno T, Alastuey A, Zhuang X, Lu W, Wang Y. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province. China. Int. J. Coal Geol. 2008;75:93–104. doi: 10.1016/j.coal.2008.04.003. DOI
Querol X, Zhuang X, Font O, Izquierdo M, Alastuey A, Castro I, van Drooge BL, Moreno T, Grimalt JO, Elvira J, Cabañas M, Bartroli R, Hower JC, Ayora C, Plana F, López-Soler A. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. Int. J. Coal Geol. 2011;85:2–22. doi: 10.1016/j.coal.2010.09.002. DOI
Łączny MJ, Olszewski P, Gogola K, Bajerski A. Factors affecting the choice of fire-protection technologies used on the coal waste dumps. J. Sustain. Min. 2011;4:87–102.
Dulewski J, Madej B, Uzarowicz R. The hazards of heating processes in the facilities of coal mining waste management. Gospodarka Surowcami Mineralnymi. 2010;26:125–142.
Howsam M, Jones KC. Sources of PAHs in the environment. In: Neilson AH, editor. Part 1 PAHs and Related Compounds. The Handbook of Environmental Chemistry. Berlin: Springer; 1998. pp. 332–345.
Boström CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, Rannug A, Törnqvist M, Victorin K, Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002;110:451–488. PubMed PMC
Gloria HG, Haedicke M. Bergewirtschaft und haldenbegruenung beim steinkkohlenbergwerk Ibbenbueren. Gluckauf. 1985;1985(121):1649–1656.
Sheail J. ‘Burning bings’: A study of pollution management in mid-twentieth century Britain. J. Hist. Geogr. 2005;2005(3):134–148. doi: 10.1016/j.jhg.2004.04.001. DOI
Polish Parliament. Environmental Protection Law, Journal of Law, item 1232, 2nd October 2013.
Regulation of the Minister of the Environment on soil quality standards and earth quality standards. Journal of Law 02.165.1359, 4th October 2002.
Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley; 2009.
Howaniec N, Smolinski A. Biowaste utilization in the process of co-gasification with bituminous coal and lignite. Energy. 2017;118:18–23. doi: 10.1016/j.energy.2016.12.021. DOI
Howaniec N, Smolinski A, Cempa-Balewicz M. Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas. Energy. 2015;84:455–461. doi: 10.1016/j.energy.2015.03.011. DOI
Romesburg C. Cluster Analysis for Researchers. Lulu Press; 2004.
Matlab 6.1.0.450 release 12.1. MathWorks: Natick, MA (2001).
Jacob J, Seidel A. Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J. Chromatogr. B. 2002;778:31–47. doi: 10.1016/S0378-4347(01)00467-4. PubMed DOI
Wang XW, Zhong NN, Hu DM, Liu ZZ, Zhang ZH. Polycyclic aromatic hydrocarbon (PAHs) pollutants in groundwater from coal gangue stack area: Characteristics and origin. Water Sci. Technol. 2009;59:1043–1051. doi: 10.2166/wst.2009.050. PubMed DOI
Yunker MB, Macdonald RW, Snowdon LR, Fowler BR. Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Org. Geochem. 2011;42:1109–1146.
Benner BA, Gordon GE, Wise SA. Mobile sources of atmospheric polycyclic aromatic hydrocarbons: A roadway tunnel study. Environ. Sci. Technol. 1989;1989(23):1269–1278. doi: 10.1021/es00068a014. DOI