DNA Methylation in Solid Tumors: Functions and Methods of Detection
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
GACR 19-02014S
Grantová Agentura České Republiky
MMCI, 00209805
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33921911
PubMed Central
PMC8073724
DOI
10.3390/ijms22084247
PII: ijms22084247
Knihovny.cz E-resources
- Keywords
- DNA biosensor, DNA methylation, bisulfite conversion, epigenetic modification, restriction enzyme, tumor, tumorigenesis,
- MeSH
- 5-Methylcytosine metabolism MeSH
- Biosensing Techniques methods MeSH
- Epigenesis, Genetic genetics MeSH
- Humans MeSH
- DNA Methylation genetics physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- 5-Methylcytosine MeSH
DNA methylation, i.e., addition of methyl group to 5'-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.
See more in PubMed
Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–326. doi: 10.1038/nature14192. PubMed DOI
Jin Z., Liu Y. DNA methylation in human diseases. Genes Dis. 2018;5:1–8. doi: 10.1016/j.gendis.2018.01.002. PubMed DOI PMC
Schübeler D. ESCI award lecture: Regulation, function and biomarker potential of DNA methylation. Eur. J. Clin. Investig. 2015;45:288–293. doi: 10.1111/eci.12403. PubMed DOI
Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., Rebhan M., Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007;39:457–466. doi: 10.1038/ng1990. PubMed DOI
Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–389. doi: 10.1038/30764. PubMed DOI
Liao J., Karnik R., Gu H., Ziller M.J., Clement K., Tsankov A.M., Akopian V., Gifford C.A., Donaghey J., Galonska C., et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 2015;47:469–478. doi: 10.1038/ng.3258. PubMed DOI PMC
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science. 2009;324:930–935. doi: 10.1126/science.1170116. PubMed DOI PMC
You Jueng S., Jones Peter A. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell. 2012;22:9–20. PubMed PMC
Kulis M., Esteller M. 2—DNA Methylation and Cancer. In: Herceg Z., Ushijima T., editors. Adv Genet. Volume 70. Academic Press; Cambridge, MA, USA: 2010. pp. 27–56. PubMed
Das P.M., Singal R. DNA methylation and cancer. J. Clin. Oncol. 2004;22:4632–4642. doi: 10.1200/JCO.2004.07.151. PubMed DOI
Li J., Poi M.J., Tsai M.-D. Regulatory Mechanisms of Tumor Suppressor P16INK4A and Their Relevance to Cancer. Biochemistry. 2011;50:5566–5582. doi: 10.1021/bi200642e. PubMed DOI PMC
Yu J., Ni M., Xu J., Zhang H., Gao B., Gu J., Chen J., Zhang L., Wu M., Zhen S., et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer. 2002;2:29. doi: 10.1186/1471-2407-2-29. PubMed DOI PMC
Bearzatto A., Conte D., Frattini M., Zaffaroni N., Andriani F., Balestra D., Tavecchio L., Daidone M.G., Sozzi G. p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin. Cancer Res. 2002;8:3782–3787. PubMed
Esteller M., Corn P.G., Baylin S.B., Herman J.G. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–3229. PubMed
Sterlacci W., Tzankov A., Veits L., Zelger B., Bihl M.P., Foerster A., Augustin F., Fiegl M., Savic S. A Comprehensive Analysis of p16 Expression, Gene Status, and Promoter Hypermethylation In Surgically Resected Non-small Cell Lung Carcinomas. J. Thorac Oncol. 2011;6:1649–1657. doi: 10.1097/JTO.0b013e3182295745. PubMed DOI
Catteau A., Harris W.H., Xu C.-F., Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: Correlation with disease characteristics. Oncogene. 1999;18:1957–1965. doi: 10.1038/sj.onc.1202509. PubMed DOI
Chang P.-Y., Liao Y.-P., Wang H.-C., Chen Y.-C., Huang R.-L., Wang Y.-C., Yuan C.-C., Lai H.-C. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients. Oncotarget. 2017;8 doi: 10.18632/oncotarget.18515. PubMed DOI PMC
Lee M.G., Huh J.S., Chung S.K., Lee J.H., Byun D.S., Ryu B.K., Kang M.J., Chae K.S., Lee S.J., Lee C.H., et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: Implication for attenuated p53 response to apoptotic stresses. Oncogene. 2006;25:5807–5822. doi: 10.1038/sj.onc.1209867. PubMed DOI
Martinez R., Setien F., Voelter C., Casado S., Quesada M.P., Schackert G., Esteller M. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis. 2007;28:1264–1268. doi: 10.1093/carcin/bgm014. PubMed DOI
Glaich O., Parikh S., Bell R.E., Mekahel K., Donyo M., Leader Y., Shayevitch R., Sheinboim D., Yannai S., Hollander D., et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat. Commun. 2019;10:5657. doi: 10.1038/s41467-019-13527-1. PubMed DOI PMC
Hoffmann M.J., Schulz W.A. Causes and consequences of DNA hypomethylation in human cancer. Biochem. Cell Biol. 2005;83:296–321. doi: 10.1139/o05-036. PubMed DOI
Ross J.P., Rand K.N., Molloy P.L. Hypomethylation of repeated DNA sequences in cancer. Epigenomics. 2010;2:245–269. doi: 10.2217/epi.10.2. PubMed DOI
Tsuda H., Takarabe T., Kanai Y., Fukutomi T., Hirohashi S. Correlation of DNA hypomethylation at pericentromeric heterochromatin regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas. Am. J. Pathol. 2002;161:859–866. doi: 10.1016/S0002-9440(10)64246-0. PubMed DOI PMC
Colemon A., Harris T.M., Ramanathan S. DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells. Gene Environ. 2020;42:24. doi: 10.1186/s41021-020-00162-2. PubMed DOI PMC
Poojary M., Jishnu P.V., Kabekkodu S.P. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol. Diagn Ther. 2020;24:537–555. doi: 10.1007/s40291-020-00476-5. PubMed DOI PMC
Ekanayake Weeramange C., Tang K.D., Vasani S., Langton-Lockton J., Kenny L., Punyadeera C. DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells. 2020;9:1359. doi: 10.3390/cells9061359. PubMed DOI PMC
Hublarova P., Hrstka R., Rotterova P., Rotter L., Coupkova M., Badal V., Nenutil R., Vojtesek B. Prediction of Human Papillomavirus 16 E6 Gene Expression and Cervical Intraepithelial Neoplasia Progression by Methylation Status. Int. J. Gyn Cancer. 2009;19:321–325. doi: 10.1111/IGC.0b013e31819d8a5c. PubMed DOI
Han H., Cortez C.C., Yang X., Nichols P.W., Jones P.A., Liang G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum. Mol. Genet. 2011;20:4299–4310. doi: 10.1093/hmg/ddr356. PubMed DOI PMC
Locke W.J., Guanzon D., Ma C., Liew Y.J., Duesing K.R., Fung K.Y.C., Ross J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150. PubMed DOI PMC
Taryma-Leśniak O., Sokolowska K.E., Wojdacz T.K. Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clin. Epigenetics. 2020;12:100. doi: 10.1186/s13148-020-00886-6. PubMed DOI PMC
Warnecke P.M., Stirzaker C., Song J., Grunau C., Melki J.R., Clark S.J. Identification and resolution of artifacts in bisulfite sequencing. Methods. 2002;27:101–107. doi: 10.1016/S1046-2023(02)00060-9. PubMed DOI
Worm Ørntoft M.B., Jensen S., Hansen T.B., Bramsen J.B., Andersen C.L. Comparative analysis of 12 different kits for bisulfite conversion of circulating cell-free DNA. Epigenetics. 2017;12:626–636. doi: 10.1080/15592294.2017.1334024. PubMed DOI PMC
Kint S., De Spiegelaere W., De Kesel J., Vandekerckhove L., Van Criekinge W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE. 2018;13:e0199091. doi: 10.1371/journal.pone.0199091. PubMed DOI PMC
Tierling S., Schmitt B., Walter J. Comprehensive Evaluation of Commercial Bisulfite-Based DNA Methylation Kits and Development of an Alternative Protocol With Improved Conversion Performance. Genet. Epigenet. 2018;10:1179237x18766097. doi: 10.1177/1179237X18766097. PubMed DOI PMC
Wang H., Ke H., Zheng Y., Lai J., Luo Q., Chen Q. A modified bisulfite conversion method for the detection of DNA methylation. Epigenomics. 2017;9:955–969. doi: 10.2217/epi-2016-0174. PubMed DOI
Qiu P., Soder G.J., Sanfiorenzo V.J., Wang L., Greene J.R., Fritz M.A., Cai X.Y. Quantification of single nucleotide polymorphisms by automated DNA sequencing. Biochem. Biophys. Res. Commun. 2003;309:331–338. doi: 10.1016/j.bbrc.2003.08.008. PubMed DOI
Jiang M., Zhang Y., Fei J., Chang X., Fan W., Qian X., Zhang T., Lu D. Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab. Invest. 2010;90:282–290. doi: 10.1038/labinvest.2009.132. PubMed DOI
Brisotto G., di Gennaro A., Damiano V., Armellin M., Perin T., Maestro R., Santarosa M. An improved sequencing-based strategy to estimate locus-specific DNA methylation. BMC Cancer. 2015;15:639. doi: 10.1186/s12885-015-1646-6. PubMed DOI PMC
Zhang Y., Rohde C., Tierling S., Stamerjohanns H., Reinhardt R., Walter J., Jeltsch A. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol. Biol. 2009;507:177–187. PubMed
Huang Z., Bassil C.F., Murphy S.K. Bisulfite sequencing of cloned alleles. Methods Mol. Biol. 2013;1049:83–94. PubMed
Esteller M., Sparks A., Toyota M., Sanchez-Cespedes M., Capella G., Peinado M.A., Gonzalez S., Tarafa G., Sidransky D., Meltzer S.J., et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60:4366–4371. PubMed
Stirzaker C., Millar D.S., Paul C.L., Warnecke P.M., Harrison J., Vincent P.C., Frommer M., Clark S.J. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997;57:2229–2237. PubMed
Xu H., Wang W., Zhao J., Li T., Kang X. Aberrant hTERT promoter methylation predicts prognosis in Chinese patients with acral and mucosal melanoma: A CONSORT-compliant article. Medicine. 2019;98:e17578. doi: 10.1097/MD.0000000000017578. PubMed DOI PMC
Li Q., Gao H., Yang H., Wei W., Jiang Y. Estradiol promotes the progression of ER+ breast cancer through methylation-mediated RSK4 inactivation. Onco Targets Ther. 2019;12:5907–5916. doi: 10.2147/OTT.S208988. PubMed DOI PMC
Bassil C.F., Huang Z., Murphy S.K. Bisulfite pyrosequencing. Methods Mol. Biol. 2013;1049:95–107. PubMed
Harrington C.T., Lin E.I., Olson M.T., Eshleman J.R. Fundamentals of pyrosequencing. Arch. Pathol. Lab. Med. 2013;137:1296–1303. doi: 10.5858/arpa.2012-0463-RA. PubMed DOI
Dupont J.M., Tost J., Jammes H., Gut I.G. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem. 2004;333:119–127. doi: 10.1016/j.ab.2004.05.007. PubMed DOI
Kreutz M., Hochstein N., Kaiser J., Narz F., Peist R. Pyrosequencing: Powerful and quantitative sequencing technology. Curr. Protoc. Mol. Biol. 2013;104:7.15.1–7.15.23. doi: 10.1002/0471142727.mb0715s104. PubMed DOI
Delaney C., Garg S.K., Yung R. Analysis of DNA Methylation by Pyrosequencing. Methods Mol. Biol. 2015;1343:249–264. PubMed PMC
Šestáková Š., Šálek C., Remešová H. DNA Methylation Validation Methods: A Coherent Review with Practical Comparison. Biol. Proced Online. 2019;21:19. doi: 10.1186/s12575-019-0107-z. PubMed DOI PMC
[(accessed on 19 April 2021)]; Available online: https://www.epigendx.com/d/service/pyrosequencing.
Ramalho-Carvalho J., Henrique R., Jerónimo C. Methylation-Specific PCR. Methods Mol. Biol. 2018;1708:447–472. PubMed
Eads C.A., Danenberg K.D., Kawakami K., Saltz L.B., Blake C., Shibata D., Danenberg P.V., Laird P.W. MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28:E32. doi: 10.1093/nar/28.8.e32. PubMed DOI PMC
Thomassin H., Kress C., Grange T. MethylQuant: A sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res. 2004;32:e168. doi: 10.1093/nar/gnh166. PubMed DOI PMC
Dugast-Darzacq C., Grange T. MethylQuant: A real-time PCR-based method to quantify DNA methylation at single specific cytosines. Methods Mol. Biol. 2009;507:281–303. PubMed
Wojdacz T.K., Dobrovic A., Hansen L.L. Methylation-sensitive high-resolution melting. Nat. Protoc. 2008;3:1903–1908. doi: 10.1038/nprot.2008.191. PubMed DOI
Hussmann D., Hansen L.L. Methylation-Sensitive High Resolution Melting (MS-HRM) Methods Mol. Biol. 2018;1708:551–571. PubMed
Majchrzak-Celińska A., Dybska E., Barciszewska A.M. DNA methylation analysis with methylation-sensitive high-resolution melting (MS-HRM) reveals gene panel for glioma characteristics. CNS Neurosci. Ther. 2020;26:1303–1314. doi: 10.1111/cns.13443. PubMed DOI PMC
Xiong Z., Laird P.W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–2534. doi: 10.1093/nar/25.12.2532. PubMed DOI PMC
Bilichak A., Kovalchuk I. The Combined Bisulfite Restriction Analysis (COBRA) Assay for the Analysis of Locus-Specific Changes in Methylation Patterns. Methods Mol. Biol. 2017;1456:63–71. PubMed
Yang C.H., Chuang L.Y., Cheng Y.H., Gu D.L., Chen C.H., Chang H.W. Methyl-Typing: An improved and visualized COBRA software for epigenomic studies. FEBS Lett. 2010;584:739–744. doi: 10.1016/j.febslet.2009.12.026. PubMed DOI
Liu D., Enriquez L., Ford C.E. ROR2 Is Epigenetically Regulated in Endometrial Cancer. Cancers. 2021;13:383. doi: 10.3390/cancers13030383. PubMed DOI PMC
Picketts D.J., Cameron C., Taylor S.A., Deugau K.V., Lillicrap D.P. Differential termination of primer extension: A novel, quantifiable method for detection of point mutations. Hum. Genet. 1992;89:155–157. doi: 10.1007/BF00217115. PubMed DOI
Gonzalgo M.L., Jones P.A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE) Nucleic Acids Res. 1997;25:2529–2531. doi: 10.1093/nar/25.12.2529. PubMed DOI PMC
Gonzalgo M.L., Jones P.A. Quantitative methylation analysis using methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) Methods. 2002;27:128–133. doi: 10.1016/S1046-2023(02)00064-6. PubMed DOI
Gonzalgo M.L., Liang G. Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nat. Protoc. 2007;2:1931–1936. doi: 10.1038/nprot.2007.271. PubMed DOI
El-Maarri O., Herbiniaux U., Walter J., Oldenburg J. A rapid, quantitative, non-radioactive bisulfite-SNuPE- IP RP HPLC assay for methylation analysis at specific CpG sites. Nucleic Acids Res. 2002;30:e25. doi: 10.1093/nar/30.6.e25. PubMed DOI PMC
Xu X.H., Bao Y., Wang X., Yan F., Guo S., Ma Y., Xu D., Jin L., Xu J., Wang J. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J. 2018;32:6694–6705. doi: 10.1096/fj.201700715. PubMed DOI
Guo S., Yan F., Xu J., Bao Y., Zhu J., Wang X., Wu J., Li Y., Pu W., Liu Y., et al. Identification and validation of the methylation biomarkers of non-small cell lung cancer (NSCLC) Clin. Epigenetics. 2015;7:3. doi: 10.1186/s13148-014-0035-3. PubMed DOI PMC
Ehrich M., Nelson M.R., Stanssens P., Zabeau M., Liloglou T., Xinarianos G., Cantor C.R., Field J.K., van den Boom D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA. 2005;102:15785–15790. doi: 10.1073/pnas.0507816102. PubMed DOI PMC
Coolen M.W., Statham A.L., Gardiner-Garden M., Clark S.J. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: Critical evaluation and improvements. Nucleic Acids Res. 2007;35:e119. doi: 10.1093/nar/gkm662. PubMed DOI PMC
Kunze S. Quantitative Region-Specific DNA Methylation Analysis by the EpiTYPER™ Technology. Methods Mol. Biol. 2018;1708:515–535. PubMed
Zeng H., Wang Y., Wang Y., Zhang Y. XXYLT1 methylation contributes to the occurrence of lung adenocarcinoma: Methylation and lung adenocarcinoma. Medicine. 2021;100:e24150. doi: 10.1097/MD.0000000000024150. PubMed DOI PMC
Siqueira J.F., Fouad A.F., Rôças I.N. Pyrosequencing as a tool for better understanding of human microbiomes. J. Oral Microbiol. 2012;4:10743. doi: 10.3402/jom.v4i0.10743. PubMed DOI PMC
Helmsauer K., Valieva M.E., Ali S., Chamorro González R., Schöpflin R., Röefzaad C., Bei Y., Dorado Garcia H., Rodriguez-Fos E., Puiggròs M., et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 2020;11:5823. doi: 10.1038/s41467-020-19452-y. PubMed DOI PMC
Cedar H., Solage A., Glaser G., Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 1979;6:2125–2132. doi: 10.1093/nar/6.6.2125. PubMed DOI PMC
Moore T. Southern analysis using methyl-sensitive restriction enzymes. Methods Mol. Biol. 2001;181:193–203. PubMed
Hashimoto K., Kokubun S., Itoi E., Roach H.I. Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics. 2007;2:86–91. doi: 10.4161/epi.2.2.4203. PubMed DOI
Nygren A.O., Ameziane N., Duarte H.M., Vijzelaar R.N., Waisfisz Q., Hess C.J., Schouten J.P., Errami A. Methylation-specific MLPA (MS-MLPA): Simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005;33:e128. doi: 10.1093/nar/gni127. PubMed DOI PMC
Moelans C.B., Atanesyan L., Savola S.P., van Diest P.J. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA) Methods Mol. Biol. 2018;1708:537–549. PubMed
Cross S.H., Charlton J.A., Nan X., Bird A.P. Purification of CpG islands using a methylated DNA binding column. Nat. Genet. 1994;6:236–244. doi: 10.1038/ng0394-236. PubMed DOI
Mohn F., Weber M., Schübeler D., Roloff T.C. Methylated DNA immunoprecipitation (MeDIP) Methods Mol. Biol. 2009;507:55–64. PubMed
Kurdyukov S., Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016;5:3. doi: 10.3390/biology5010003. PubMed DOI PMC
Mitchell N., Deangelis J.T., Tollefsbol T.O. Methylated-CpG Island Recovery Assay. Methods Mol. Biol. 2011;791:125–133. PubMed PMC
Skvortsova K., Stirzaker C., Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63:797–811. PubMed PMC
Fernandez A.F., Valledor L., Vallejo F., Cañal M.J., Fraga M.F. Quantification of Global DNA Methylation Levels by Mass Spectrometry. Methods Mol. Biol. 2018;1708:49–58. PubMed
Berdasco M., Fraga M.F., Esteller M. Quantification of global DNA methylation by capillary electrophoresis and mass spectrometry. Methods Mol. Biol. 2009;507:23–34. PubMed
Karimi M., Johansson S., Stach D., Corcoran M., Grandér D., Schalling M., Bakalkin G., Lyko F., Larsson C., Ekström T.J. LUMA (LUminometric Methylation Assay)—A high throughput method to the analysis of genomic DNA methylation. Exp. Cell Res. 2006;312:1989–1995. doi: 10.1016/j.yexcr.2006.03.006. PubMed DOI
Karimi M., Johansson S., Ekström T.J. Using LUMA: A Luminometric-based assay for global DNA-methylation. Epigenetics. 2006;1:45–48. PubMed
Ball M.P., Li J.B., Gao Y., Lee J.H., LeProust E.M., Park I.H., Xie B., Daley G.Q., Church G.M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 2009;27:361–368. doi: 10.1038/nbt.1533. PubMed DOI PMC
Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C., Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. doi: 10.1126/science.1210597. PubMed DOI PMC
Zhang D., Wang Y., Bai Y., Ge Q., Qiao Y., Luo J., Jia C., Lu Z. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray. BMC Genom. 2008;9:59. doi: 10.1186/1471-2164-9-59. PubMed DOI PMC
Smith Z.D., Gu H., Bock C., Gnirke A., Meissner A. High-throughput bisulfite sequencing in mammalian genomes. Methods. 2009;48:226–232. doi: 10.1016/j.ymeth.2009.05.003. PubMed DOI PMC
Taiwo O., Wilson G.A., Morris T., Seisenberger S., Reik W., Pearce D., Beck S., Butcher L.M. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc. 2012;7:617–636. doi: 10.1038/nprot.2012.012. PubMed DOI
Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., Lam W.L., Schübeler D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 2005;37:853–862. doi: 10.1038/ng1598. PubMed DOI
Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B., et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. PubMed DOI
Clark T.A., Murray I.A., Morgan R.D., Kislyuk A.O., Spittle K.E., Boitano M., Fomenkov A., Roberts R.J., Korlach J. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 2012;40:e29. doi: 10.1093/nar/gkr1146. PubMed DOI PMC
Flusberg B.A., Webster D.R., Lee J.H., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 2010;7:461–465. doi: 10.1038/nmeth.1459. PubMed DOI PMC
Beaulaurier J., Zhang X.S., Zhu S., Sebra R., Rosenbluh C., Deikus G., Shen N., Munera D., Waldor M.K., Chess A., et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat. Commun. 2015;6:7438. doi: 10.1038/ncomms8438. PubMed DOI PMC
Laver T., Harrison J., O’Neill P.A., Moore K., Farbos A., Paszkiewicz K., Studholme D.J. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif. 2015;3:1–8. doi: 10.1016/j.bdq.2015.02.001. PubMed DOI PMC
Kono N., Arakawa K. Nanopore sequencing: Review of potential applications in functional genomics. Dev. Growth Differ. 2019;61:316–326. doi: 10.1111/dgd.12608. PubMed DOI
Petersen L.M., Martin I.W., Moschetti W.E., Kershaw C.M., Tsongalis G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019;58:e01315-19. doi: 10.1128/JCM.01315-19. PubMed DOI PMC
Rang F.J., Kloosterman W.P., de Ridder J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19:90. doi: 10.1186/s13059-018-1462-9. PubMed DOI PMC
Ding H., Bailey A.D., Jain M., Olsen H., Paten B. Gaussian mixture model-based unsupervised nucleotide modification number detection using nanopore-sequencing readouts. Bioinformatics. 2020;36:4928–4934. doi: 10.1093/bioinformatics/btaa601. PubMed DOI PMC
Ni P., Huang N., Zhang Z., Wang D.P., Liang F., Miao Y., Xiao C.L., Luo F., Wang J. DeepSignal: Detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics. 2019;35:4586–4595. doi: 10.1093/bioinformatics/btz276. PubMed DOI
Jayanthi V.S.P.K., Sankara A., Das A.B., Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017;91:15–23. doi: 10.1016/j.bios.2016.12.014. PubMed DOI
Khanmohammadi A., Aghaie A., Vahedi E., Qazvini A., Ghanei M., Afkhami A., Hajian A., Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta. 2020;206:120251. doi: 10.1016/j.talanta.2019.120251. PubMed DOI
Li J., Li S., Yang C.F. Electrochemical Biosensors for Cancer Biomarker Detection. Electroanalysis. 2012;24:2213–2229. doi: 10.1002/elan.201200447. DOI
Li Z.-M., Pi T., Yan X.-L., Tang X.-M., Deng R.-H., Zheng X.-J. Label-free and enzyme-free one-step rapid colorimetric detection of DNA methylation based on unmodified gold nanoparticles. Spectrochim Acta A Mol. Biomol. Spectr. 2020;238:118375. doi: 10.1016/j.saa.2020.118375. PubMed DOI
Cao A., Zhang C.-Y. Sensitive and Label-Free DNA Methylation Detection by Ligation-Mediated Hyperbranched Rolling Circle Amplification. Anal. Chem. 2012;84:6199–6205. doi: 10.1021/ac301186j. PubMed DOI
Zhang Y., Hu J., Zou X., Ma F., Qiu J.-G., Zhang C.-Y. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem. Commun. 2021;57:2073–2076. doi: 10.1039/D0CC08306B. PubMed DOI
Ma Y., Zhang H., Liu F., Wu Z., Lu S., Jin Q., Zhao J., Zhong X., Mao H. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method. Nanoscale. 2015;7:17547–17555. doi: 10.1039/C5NR04956C. PubMed DOI
Su F., Wang L., Sun Y., Liu C., Duan X., Li Z. Highly sensitive detection of CpG methylation in genomic DNA by AuNP-based colorimetric assay with ligase chain reaction. Chem. Commun. 2015;51:3371–3374. doi: 10.1039/C4CC07688E. PubMed DOI
Wang Z.-Y., Wang L.-J., Zhang Q., Tang B., Zhang C.-Y. Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem. Sci. 2018;9:1330–1338. doi: 10.1039/C7SC04813K. PubMed DOI PMC
Sun Y., Sun Y., Tian W., Liu C., Gao K., Li Z. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction. Chem. Sci. 2018;9:1344–1351. doi: 10.1039/C7SC04975G. PubMed DOI PMC
Hiraoka D., Yoshida W., Abe K., Wakeda H., Hata K., Ikebukuro K. Development of a Method To Measure DNA Methylation Levels by Using Methyl CpG-Binding Protein and Luciferase-Fused Zinc Finger Protein. Anal. Chem. 2012;84:8259–8264. doi: 10.1021/ac3015774. PubMed DOI
Xue Q., Lv Y., Xu S., Zhang Y., Wang L., Li R., Yue Q., Li H., Gu X., Zhang S., et al. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation. Biosens. Bioelectron. 2015;66:547–553. doi: 10.1016/j.bios.2014.12.017. PubMed DOI
Dadmehr M., Hosseini M., Hosseinkhani S., Reza Ganjali M., Sheikhnejad R. Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens. Bioelectron. 2015;73:108–113. doi: 10.1016/j.bios.2015.05.062. PubMed DOI
Wang X., Chen F., Zhang D., Zhao Y., Wei J., Wang L., Song S., Fan C., Zhao Y. Single copy-sensitive electrochemical assay for circulating methylated DNA in clinical samples with ultrahigh specificity based on a sequential discrimination-amplification strategy. Chem. Sci. 2017;8:4764–4770. doi: 10.1039/C7SC01035D. PubMed DOI PMC
Povedano E., Montiel V.R.-V., Valverde A., Navarro-Villoslada F., Yáñez-Sedeño P., Pedrero M., Montero-Calle A., Barderas R., Peláez-García A., Mendiola M., et al. Versatile Electroanalytical Bioplatforms for Simultaneous Determination of Cancer-Related DNA 5-Methyl- and 5-Hydroxymethyl-Cytosines at Global and Gene-Specific Levels in Human Serum and Tissues. ACS Sens. 2019;4:227–234. doi: 10.1021/acssensors.8b01339. PubMed DOI
Haque M.H., Gopalan V., Yadav S., Islam M.N., Eftekhari E., Li Q., Carrascosa L.G., Nguyen N.-T., Lam A.K., Shiddiky M.J.A. Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosens. Bioelectron. 2017;87:615–621. doi: 10.1016/j.bios.2016.09.016. PubMed DOI
Furst A.L., Muren N.B., Hill M.G., Barton J.K. Label-free electrochemical detection of human methyltransferase from tumors. Proc. Natl. Acad. Sci. USA. 2014;111:14985–14989. doi: 10.1073/pnas.1417351111. PubMed DOI PMC
Chen S., Su J., Zhao Z., Shao Y., Dou Y., Li F., Deng W., Shi J., Li Q., Zuo X., et al. DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. Nano Lett. 2020;20:7028–7035. doi: 10.1021/acs.nanolett.0c01898. PubMed DOI
Feng Q., Wang M., Qin L., Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sensors. 2019;4:2615–2622. doi: 10.1021/acssensors.9b00720. PubMed DOI
Gao F., Fan T., Ou S., Wu J., Zhang X., Luo J., Li N., Yao Y., Mou Y., Liao X., et al. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens. Bioelectron. 2018;99:201–208. doi: 10.1016/j.bios.2017.07.063. PubMed DOI
Lee J., Yoshida W., Abe K., Nakabayashi K., Wakeda H., Hata K., Marquette C.A., Blum L.J., Sode K., Ikebukuro K. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosens. Bioelectron. 2017;93:118–123. doi: 10.1016/j.bios.2016.09.060. PubMed DOI
Sedlackova E., Bytesnikova Z., Birgusova E., Svec P., Ashrafi A.M., Estrela P., Richtera L. Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay. Materials. 2020;13:4936. doi: 10.3390/ma13214936. PubMed DOI PMC
Campuzano S., Pingarrón J.M. Electrochemical Sensing of Cancer-related Global and Locus-specific DNA Methylation Events. Electroanalysis. 2018;30:1201–1216. doi: 10.1002/elan.201800004. DOI
Zhang Q., Wu Y., Xu Q., Ma F., Zhang C.Y. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens. Bioelectron. 2021;171:112712. doi: 10.1016/j.bios.2020.112712. PubMed DOI
Bartosik M., Hrstka R. Bioelectrochemistry of nucleic acids for early cancer diagnostics—Analysis of DNA methylation and detection of microRNAs. Rev. Anal. Chem. 2017;36 doi: 10.1515/revac-2016-0022. DOI
Feng Q., Qin L., Wang M., Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens. Bioelectron. 2020;149:111847. doi: 10.1016/j.bios.2019.111847. PubMed DOI
Povedano E., Vargas E., Montiel V.R.-V., Torrente-Rodríguez R.M., Pedrero M., Barderas R., Segundo-Acosta P.S., Peláez-García A., Mendiola M., Hardisson D., et al. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci. Rep. 2018;8:6418. doi: 10.1038/s41598-018-24902-1. PubMed DOI PMC
Taylor S.M., Jones P.A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–779. doi: 10.1016/0092-8674(79)90317-9. PubMed DOI
Feinberg A.P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92. doi: 10.1038/301089a0. PubMed DOI
Baylin S.B., Höppener J.W., de Bustros A., Steenbergh P.H., Lips C.J., Nelkin B.D. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 1986;46:2917–2922. PubMed
Bestor T., Laudano A., Mattaliano R., Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988;203:971–983. doi: 10.1016/0022-2836(88)90122-2. PubMed DOI
Okano M., Bell D.W., Haber D.A., Li E. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell. 1999;99:247–257. doi: 10.1016/S0092-8674(00)81656-6. PubMed DOI
Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–1133. doi: 10.1038/nature09303. PubMed DOI PMC
Dubin D.T., Taylor R.H. The methylation state of poly A-containing-messenger RNA from cultured hamster cells. Nucleic Acids Res. 1975;2:1653–1668. doi: 10.1093/nar/2.10.1653. PubMed DOI PMC
Zaccara S., Ries R.J., Jaffrey S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 2019;20:608–624. doi: 10.1038/s41580-019-0168-5. PubMed DOI
Zhou Y., Kong Y., Fan W., Tao T., Xiao Q., Li N., Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed. Pharmacother. 2020;131:110731. doi: 10.1016/j.biopha.2020.110731. PubMed DOI
Peixoto P., Cartron P.-F., Serandour A.A., Hervouet E. From 1957 to Nowadays: A Brief History of Epigenetics. Int. J. Mol. Sci. 2020;21:7571. doi: 10.3390/ijms21207571. PubMed DOI PMC
Wajed S.A., Laird P.W., DeMeester T.R. DNA methylation: An alternative pathway to cancer. Ann. Surg. 2001;234:10–20. doi: 10.1097/00000658-200107000-00003. PubMed DOI PMC
Shapiro R., Servis R.E., Welcher M. Reactions of Uracil and Cytosine Derivatives with Sodium Bisulfite. J. Am. Chem. Soc. 1970;92:422–424. doi: 10.1021/ja00705a626. DOI
Hayatsu H., Wataya Y., Kai K. Addition of sodium bisulfite to uracil and to cytosine. J. Am. Chem. Soc. 1970;92:724–726. doi: 10.1021/ja00706a062. PubMed DOI
Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt F., Grigg G.W., Molloy P.L., Paul C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA. 1992;89:1827–1831. doi: 10.1073/pnas.89.5.1827. PubMed DOI PMC
Parle-Mcdermott A., Harrison A. DNA Methylation: A Timeline of Methods and Applications. Front. Genet. 2011;2:74. PubMed PMC
Grützmann R., Molnar B., Pilarsky C., Habermann J.K., Schlag P.M., Saeger H.D., Miehlke S., Stolz T., Model F., Roblick U.J., et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE. 2008;3:e3759. doi: 10.1371/journal.pone.0003759. PubMed DOI PMC
Gonzalgo M.L., Pavlovich C.P., Lee S.M., Nelson W.G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res. 2003;9:2673–2677. PubMed
Esteller M., Garcia-Foncillas J., Andion E., Goodman S.N., Hidalgo O.F., Vanaclocha V., Baylin S.B., Herman J.G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 2000;343:1350–1354. doi: 10.1056/NEJM200011093431901. PubMed DOI