• This record comes from PubMed

DNA Methylation in Solid Tumors: Functions and Methods of Detection

. 2021 Apr 19 ; 22 (8) : . [epub] 20210419

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
GACR 19-02014S Grantová Agentura České Republiky
MMCI, 00209805 Ministerstvo Zdravotnictví Ceské Republiky

DNA methylation, i.e., addition of methyl group to 5'-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.

See more in PubMed

Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–326. doi: 10.1038/nature14192. PubMed DOI

Jin Z., Liu Y. DNA methylation in human diseases. Genes Dis. 2018;5:1–8. doi: 10.1016/j.gendis.2018.01.002. PubMed DOI PMC

Schübeler D. ESCI award lecture: Regulation, function and biomarker potential of DNA methylation. Eur. J. Clin. Investig. 2015;45:288–293. doi: 10.1111/eci.12403. PubMed DOI

Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., Rebhan M., Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007;39:457–466. doi: 10.1038/ng1990. PubMed DOI

Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–389. doi: 10.1038/30764. PubMed DOI

Liao J., Karnik R., Gu H., Ziller M.J., Clement K., Tsankov A.M., Akopian V., Gifford C.A., Donaghey J., Galonska C., et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 2015;47:469–478. doi: 10.1038/ng.3258. PubMed DOI PMC

Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science. 2009;324:930–935. doi: 10.1126/science.1170116. PubMed DOI PMC

You Jueng S., Jones Peter A. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell. 2012;22:9–20. PubMed PMC

Kulis M., Esteller M. 2—DNA Methylation and Cancer. In: Herceg Z., Ushijima T., editors. Adv Genet. Volume 70. Academic Press; Cambridge, MA, USA: 2010. pp. 27–56. PubMed

Das P.M., Singal R. DNA methylation and cancer. J. Clin. Oncol. 2004;22:4632–4642. doi: 10.1200/JCO.2004.07.151. PubMed DOI

Li J., Poi M.J., Tsai M.-D. Regulatory Mechanisms of Tumor Suppressor P16INK4A and Their Relevance to Cancer. Biochemistry. 2011;50:5566–5582. doi: 10.1021/bi200642e. PubMed DOI PMC

Yu J., Ni M., Xu J., Zhang H., Gao B., Gu J., Chen J., Zhang L., Wu M., Zhen S., et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer. 2002;2:29. doi: 10.1186/1471-2407-2-29. PubMed DOI PMC

Bearzatto A., Conte D., Frattini M., Zaffaroni N., Andriani F., Balestra D., Tavecchio L., Daidone M.G., Sozzi G. p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin. Cancer Res. 2002;8:3782–3787. PubMed

Esteller M., Corn P.G., Baylin S.B., Herman J.G. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–3229. PubMed

Sterlacci W., Tzankov A., Veits L., Zelger B., Bihl M.P., Foerster A., Augustin F., Fiegl M., Savic S. A Comprehensive Analysis of p16 Expression, Gene Status, and Promoter Hypermethylation In Surgically Resected Non-small Cell Lung Carcinomas. J. Thorac Oncol. 2011;6:1649–1657. doi: 10.1097/JTO.0b013e3182295745. PubMed DOI

Catteau A., Harris W.H., Xu C.-F., Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: Correlation with disease characteristics. Oncogene. 1999;18:1957–1965. doi: 10.1038/sj.onc.1202509. PubMed DOI

Chang P.-Y., Liao Y.-P., Wang H.-C., Chen Y.-C., Huang R.-L., Wang Y.-C., Yuan C.-C., Lai H.-C. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients. Oncotarget. 2017;8 doi: 10.18632/oncotarget.18515. PubMed DOI PMC

Lee M.G., Huh J.S., Chung S.K., Lee J.H., Byun D.S., Ryu B.K., Kang M.J., Chae K.S., Lee S.J., Lee C.H., et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: Implication for attenuated p53 response to apoptotic stresses. Oncogene. 2006;25:5807–5822. doi: 10.1038/sj.onc.1209867. PubMed DOI

Martinez R., Setien F., Voelter C., Casado S., Quesada M.P., Schackert G., Esteller M. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis. 2007;28:1264–1268. doi: 10.1093/carcin/bgm014. PubMed DOI

Glaich O., Parikh S., Bell R.E., Mekahel K., Donyo M., Leader Y., Shayevitch R., Sheinboim D., Yannai S., Hollander D., et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat. Commun. 2019;10:5657. doi: 10.1038/s41467-019-13527-1. PubMed DOI PMC

Hoffmann M.J., Schulz W.A. Causes and consequences of DNA hypomethylation in human cancer. Biochem. Cell Biol. 2005;83:296–321. doi: 10.1139/o05-036. PubMed DOI

Ross J.P., Rand K.N., Molloy P.L. Hypomethylation of repeated DNA sequences in cancer. Epigenomics. 2010;2:245–269. doi: 10.2217/epi.10.2. PubMed DOI

Tsuda H., Takarabe T., Kanai Y., Fukutomi T., Hirohashi S. Correlation of DNA hypomethylation at pericentromeric heterochromatin regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas. Am. J. Pathol. 2002;161:859–866. doi: 10.1016/S0002-9440(10)64246-0. PubMed DOI PMC

Colemon A., Harris T.M., Ramanathan S. DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells. Gene Environ. 2020;42:24. doi: 10.1186/s41021-020-00162-2. PubMed DOI PMC

Poojary M., Jishnu P.V., Kabekkodu S.P. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol. Diagn Ther. 2020;24:537–555. doi: 10.1007/s40291-020-00476-5. PubMed DOI PMC

Ekanayake Weeramange C., Tang K.D., Vasani S., Langton-Lockton J., Kenny L., Punyadeera C. DNA Methylation Changes in Human Papillomavirus-Driven Head and Neck Cancers. Cells. 2020;9:1359. doi: 10.3390/cells9061359. PubMed DOI PMC

Hublarova P., Hrstka R., Rotterova P., Rotter L., Coupkova M., Badal V., Nenutil R., Vojtesek B. Prediction of Human Papillomavirus 16 E6 Gene Expression and Cervical Intraepithelial Neoplasia Progression by Methylation Status. Int. J. Gyn Cancer. 2009;19:321–325. doi: 10.1111/IGC.0b013e31819d8a5c. PubMed DOI

Han H., Cortez C.C., Yang X., Nichols P.W., Jones P.A., Liang G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum. Mol. Genet. 2011;20:4299–4310. doi: 10.1093/hmg/ddr356. PubMed DOI PMC

Locke W.J., Guanzon D., Ma C., Liew Y.J., Duesing K.R., Fung K.Y.C., Ross J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150. PubMed DOI PMC

Taryma-Leśniak O., Sokolowska K.E., Wojdacz T.K. Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clin. Epigenetics. 2020;12:100. doi: 10.1186/s13148-020-00886-6. PubMed DOI PMC

Warnecke P.M., Stirzaker C., Song J., Grunau C., Melki J.R., Clark S.J. Identification and resolution of artifacts in bisulfite sequencing. Methods. 2002;27:101–107. doi: 10.1016/S1046-2023(02)00060-9. PubMed DOI

Worm Ørntoft M.B., Jensen S., Hansen T.B., Bramsen J.B., Andersen C.L. Comparative analysis of 12 different kits for bisulfite conversion of circulating cell-free DNA. Epigenetics. 2017;12:626–636. doi: 10.1080/15592294.2017.1334024. PubMed DOI PMC

Kint S., De Spiegelaere W., De Kesel J., Vandekerckhove L., Van Criekinge W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE. 2018;13:e0199091. doi: 10.1371/journal.pone.0199091. PubMed DOI PMC

Tierling S., Schmitt B., Walter J. Comprehensive Evaluation of Commercial Bisulfite-Based DNA Methylation Kits and Development of an Alternative Protocol With Improved Conversion Performance. Genet. Epigenet. 2018;10:1179237x18766097. doi: 10.1177/1179237X18766097. PubMed DOI PMC

Wang H., Ke H., Zheng Y., Lai J., Luo Q., Chen Q. A modified bisulfite conversion method for the detection of DNA methylation. Epigenomics. 2017;9:955–969. doi: 10.2217/epi-2016-0174. PubMed DOI

Qiu P., Soder G.J., Sanfiorenzo V.J., Wang L., Greene J.R., Fritz M.A., Cai X.Y. Quantification of single nucleotide polymorphisms by automated DNA sequencing. Biochem. Biophys. Res. Commun. 2003;309:331–338. doi: 10.1016/j.bbrc.2003.08.008. PubMed DOI

Jiang M., Zhang Y., Fei J., Chang X., Fan W., Qian X., Zhang T., Lu D. Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab. Invest. 2010;90:282–290. doi: 10.1038/labinvest.2009.132. PubMed DOI

Brisotto G., di Gennaro A., Damiano V., Armellin M., Perin T., Maestro R., Santarosa M. An improved sequencing-based strategy to estimate locus-specific DNA methylation. BMC Cancer. 2015;15:639. doi: 10.1186/s12885-015-1646-6. PubMed DOI PMC

Zhang Y., Rohde C., Tierling S., Stamerjohanns H., Reinhardt R., Walter J., Jeltsch A. DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol. Biol. 2009;507:177–187. PubMed

Huang Z., Bassil C.F., Murphy S.K. Bisulfite sequencing of cloned alleles. Methods Mol. Biol. 2013;1049:83–94. PubMed

Esteller M., Sparks A., Toyota M., Sanchez-Cespedes M., Capella G., Peinado M.A., Gonzalez S., Tarafa G., Sidransky D., Meltzer S.J., et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60:4366–4371. PubMed

Stirzaker C., Millar D.S., Paul C.L., Warnecke P.M., Harrison J., Vincent P.C., Frommer M., Clark S.J. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res. 1997;57:2229–2237. PubMed

Xu H., Wang W., Zhao J., Li T., Kang X. Aberrant hTERT promoter methylation predicts prognosis in Chinese patients with acral and mucosal melanoma: A CONSORT-compliant article. Medicine. 2019;98:e17578. doi: 10.1097/MD.0000000000017578. PubMed DOI PMC

Li Q., Gao H., Yang H., Wei W., Jiang Y. Estradiol promotes the progression of ER+ breast cancer through methylation-mediated RSK4 inactivation. Onco Targets Ther. 2019;12:5907–5916. doi: 10.2147/OTT.S208988. PubMed DOI PMC

Bassil C.F., Huang Z., Murphy S.K. Bisulfite pyrosequencing. Methods Mol. Biol. 2013;1049:95–107. PubMed

Harrington C.T., Lin E.I., Olson M.T., Eshleman J.R. Fundamentals of pyrosequencing. Arch. Pathol. Lab. Med. 2013;137:1296–1303. doi: 10.5858/arpa.2012-0463-RA. PubMed DOI

Dupont J.M., Tost J., Jammes H., Gut I.G. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem. 2004;333:119–127. doi: 10.1016/j.ab.2004.05.007. PubMed DOI

Kreutz M., Hochstein N., Kaiser J., Narz F., Peist R. Pyrosequencing: Powerful and quantitative sequencing technology. Curr. Protoc. Mol. Biol. 2013;104:7.15.1–7.15.23. doi: 10.1002/0471142727.mb0715s104. PubMed DOI

Delaney C., Garg S.K., Yung R. Analysis of DNA Methylation by Pyrosequencing. Methods Mol. Biol. 2015;1343:249–264. PubMed PMC

Šestáková Š., Šálek C., Remešová H. DNA Methylation Validation Methods: A Coherent Review with Practical Comparison. Biol. Proced Online. 2019;21:19. doi: 10.1186/s12575-019-0107-z. PubMed DOI PMC

[(accessed on 19 April 2021)]; Available online: https://www.epigendx.com/d/service/pyrosequencing.

Ramalho-Carvalho J., Henrique R., Jerónimo C. Methylation-Specific PCR. Methods Mol. Biol. 2018;1708:447–472. PubMed

Eads C.A., Danenberg K.D., Kawakami K., Saltz L.B., Blake C., Shibata D., Danenberg P.V., Laird P.W. MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28:E32. doi: 10.1093/nar/28.8.e32. PubMed DOI PMC

Thomassin H., Kress C., Grange T. MethylQuant: A sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res. 2004;32:e168. doi: 10.1093/nar/gnh166. PubMed DOI PMC

Dugast-Darzacq C., Grange T. MethylQuant: A real-time PCR-based method to quantify DNA methylation at single specific cytosines. Methods Mol. Biol. 2009;507:281–303. PubMed

Wojdacz T.K., Dobrovic A., Hansen L.L. Methylation-sensitive high-resolution melting. Nat. Protoc. 2008;3:1903–1908. doi: 10.1038/nprot.2008.191. PubMed DOI

Hussmann D., Hansen L.L. Methylation-Sensitive High Resolution Melting (MS-HRM) Methods Mol. Biol. 2018;1708:551–571. PubMed

Majchrzak-Celińska A., Dybska E., Barciszewska A.M. DNA methylation analysis with methylation-sensitive high-resolution melting (MS-HRM) reveals gene panel for glioma characteristics. CNS Neurosci. Ther. 2020;26:1303–1314. doi: 10.1111/cns.13443. PubMed DOI PMC

Xiong Z., Laird P.W. COBRA: A sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 1997;25:2532–2534. doi: 10.1093/nar/25.12.2532. PubMed DOI PMC

Bilichak A., Kovalchuk I. The Combined Bisulfite Restriction Analysis (COBRA) Assay for the Analysis of Locus-Specific Changes in Methylation Patterns. Methods Mol. Biol. 2017;1456:63–71. PubMed

Yang C.H., Chuang L.Y., Cheng Y.H., Gu D.L., Chen C.H., Chang H.W. Methyl-Typing: An improved and visualized COBRA software for epigenomic studies. FEBS Lett. 2010;584:739–744. doi: 10.1016/j.febslet.2009.12.026. PubMed DOI

Liu D., Enriquez L., Ford C.E. ROR2 Is Epigenetically Regulated in Endometrial Cancer. Cancers. 2021;13:383. doi: 10.3390/cancers13030383. PubMed DOI PMC

Picketts D.J., Cameron C., Taylor S.A., Deugau K.V., Lillicrap D.P. Differential termination of primer extension: A novel, quantifiable method for detection of point mutations. Hum. Genet. 1992;89:155–157. doi: 10.1007/BF00217115. PubMed DOI

Gonzalgo M.L., Jones P.A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE) Nucleic Acids Res. 1997;25:2529–2531. doi: 10.1093/nar/25.12.2529. PubMed DOI PMC

Gonzalgo M.L., Jones P.A. Quantitative methylation analysis using methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) Methods. 2002;27:128–133. doi: 10.1016/S1046-2023(02)00064-6. PubMed DOI

Gonzalgo M.L., Liang G. Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nat. Protoc. 2007;2:1931–1936. doi: 10.1038/nprot.2007.271. PubMed DOI

El-Maarri O., Herbiniaux U., Walter J., Oldenburg J. A rapid, quantitative, non-radioactive bisulfite-SNuPE- IP RP HPLC assay for methylation analysis at specific CpG sites. Nucleic Acids Res. 2002;30:e25. doi: 10.1093/nar/30.6.e25. PubMed DOI PMC

Xu X.H., Bao Y., Wang X., Yan F., Guo S., Ma Y., Xu D., Jin L., Xu J., Wang J. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J. 2018;32:6694–6705. doi: 10.1096/fj.201700715. PubMed DOI

Guo S., Yan F., Xu J., Bao Y., Zhu J., Wang X., Wu J., Li Y., Pu W., Liu Y., et al. Identification and validation of the methylation biomarkers of non-small cell lung cancer (NSCLC) Clin. Epigenetics. 2015;7:3. doi: 10.1186/s13148-014-0035-3. PubMed DOI PMC

Ehrich M., Nelson M.R., Stanssens P., Zabeau M., Liloglou T., Xinarianos G., Cantor C.R., Field J.K., van den Boom D. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA. 2005;102:15785–15790. doi: 10.1073/pnas.0507816102. PubMed DOI PMC

Coolen M.W., Statham A.L., Gardiner-Garden M., Clark S.J. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: Critical evaluation and improvements. Nucleic Acids Res. 2007;35:e119. doi: 10.1093/nar/gkm662. PubMed DOI PMC

Kunze S. Quantitative Region-Specific DNA Methylation Analysis by the EpiTYPER™ Technology. Methods Mol. Biol. 2018;1708:515–535. PubMed

Zeng H., Wang Y., Wang Y., Zhang Y. XXYLT1 methylation contributes to the occurrence of lung adenocarcinoma: Methylation and lung adenocarcinoma. Medicine. 2021;100:e24150. doi: 10.1097/MD.0000000000024150. PubMed DOI PMC

Siqueira J.F., Fouad A.F., Rôças I.N. Pyrosequencing as a tool for better understanding of human microbiomes. J. Oral Microbiol. 2012;4:10743. doi: 10.3402/jom.v4i0.10743. PubMed DOI PMC

Helmsauer K., Valieva M.E., Ali S., Chamorro González R., Schöpflin R., Röefzaad C., Bei Y., Dorado Garcia H., Rodriguez-Fos E., Puiggròs M., et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 2020;11:5823. doi: 10.1038/s41467-020-19452-y. PubMed DOI PMC

Cedar H., Solage A., Glaser G., Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 1979;6:2125–2132. doi: 10.1093/nar/6.6.2125. PubMed DOI PMC

Moore T. Southern analysis using methyl-sensitive restriction enzymes. Methods Mol. Biol. 2001;181:193–203. PubMed

Hashimoto K., Kokubun S., Itoi E., Roach H.I. Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics. 2007;2:86–91. doi: 10.4161/epi.2.2.4203. PubMed DOI

Nygren A.O., Ameziane N., Duarte H.M., Vijzelaar R.N., Waisfisz Q., Hess C.J., Schouten J.P., Errami A. Methylation-specific MLPA (MS-MLPA): Simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005;33:e128. doi: 10.1093/nar/gni127. PubMed DOI PMC

Moelans C.B., Atanesyan L., Savola S.P., van Diest P.J. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA) Methods Mol. Biol. 2018;1708:537–549. PubMed

Cross S.H., Charlton J.A., Nan X., Bird A.P. Purification of CpG islands using a methylated DNA binding column. Nat. Genet. 1994;6:236–244. doi: 10.1038/ng0394-236. PubMed DOI

Mohn F., Weber M., Schübeler D., Roloff T.C. Methylated DNA immunoprecipitation (MeDIP) Methods Mol. Biol. 2009;507:55–64. PubMed

Kurdyukov S., Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology. 2016;5:3. doi: 10.3390/biology5010003. PubMed DOI PMC

Mitchell N., Deangelis J.T., Tollefsbol T.O. Methylated-CpG Island Recovery Assay. Methods Mol. Biol. 2011;791:125–133. PubMed PMC

Skvortsova K., Stirzaker C., Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63:797–811. PubMed PMC

Fernandez A.F., Valledor L., Vallejo F., Cañal M.J., Fraga M.F. Quantification of Global DNA Methylation Levels by Mass Spectrometry. Methods Mol. Biol. 2018;1708:49–58. PubMed

Berdasco M., Fraga M.F., Esteller M. Quantification of global DNA methylation by capillary electrophoresis and mass spectrometry. Methods Mol. Biol. 2009;507:23–34. PubMed

Karimi M., Johansson S., Stach D., Corcoran M., Grandér D., Schalling M., Bakalkin G., Lyko F., Larsson C., Ekström T.J. LUMA (LUminometric Methylation Assay)—A high throughput method to the analysis of genomic DNA methylation. Exp. Cell Res. 2006;312:1989–1995. doi: 10.1016/j.yexcr.2006.03.006. PubMed DOI

Karimi M., Johansson S., Ekström T.J. Using LUMA: A Luminometric-based assay for global DNA-methylation. Epigenetics. 2006;1:45–48. PubMed

Ball M.P., Li J.B., Gao Y., Lee J.H., LeProust E.M., Park I.H., Xie B., Daley G.Q., Church G.M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 2009;27:361–368. doi: 10.1038/nbt.1533. PubMed DOI PMC

Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C., Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. doi: 10.1126/science.1210597. PubMed DOI PMC

Zhang D., Wang Y., Bai Y., Ge Q., Qiao Y., Luo J., Jia C., Lu Z. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray. BMC Genom. 2008;9:59. doi: 10.1186/1471-2164-9-59. PubMed DOI PMC

Smith Z.D., Gu H., Bock C., Gnirke A., Meissner A. High-throughput bisulfite sequencing in mammalian genomes. Methods. 2009;48:226–232. doi: 10.1016/j.ymeth.2009.05.003. PubMed DOI PMC

Taiwo O., Wilson G.A., Morris T., Seisenberger S., Reik W., Pearce D., Beck S., Butcher L.M. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc. 2012;7:617–636. doi: 10.1038/nprot.2012.012. PubMed DOI

Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., Lam W.L., Schübeler D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 2005;37:853–862. doi: 10.1038/ng1598. PubMed DOI

Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B., et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. PubMed DOI

Clark T.A., Murray I.A., Morgan R.D., Kislyuk A.O., Spittle K.E., Boitano M., Fomenkov A., Roberts R.J., Korlach J. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 2012;40:e29. doi: 10.1093/nar/gkr1146. PubMed DOI PMC

Flusberg B.A., Webster D.R., Lee J.H., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 2010;7:461–465. doi: 10.1038/nmeth.1459. PubMed DOI PMC

Beaulaurier J., Zhang X.S., Zhu S., Sebra R., Rosenbluh C., Deikus G., Shen N., Munera D., Waldor M.K., Chess A., et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat. Commun. 2015;6:7438. doi: 10.1038/ncomms8438. PubMed DOI PMC

Laver T., Harrison J., O’Neill P.A., Moore K., Farbos A., Paszkiewicz K., Studholme D.J. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif. 2015;3:1–8. doi: 10.1016/j.bdq.2015.02.001. PubMed DOI PMC

Kono N., Arakawa K. Nanopore sequencing: Review of potential applications in functional genomics. Dev. Growth Differ. 2019;61:316–326. doi: 10.1111/dgd.12608. PubMed DOI

Petersen L.M., Martin I.W., Moschetti W.E., Kershaw C.M., Tsongalis G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019;58:e01315-19. doi: 10.1128/JCM.01315-19. PubMed DOI PMC

Rang F.J., Kloosterman W.P., de Ridder J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19:90. doi: 10.1186/s13059-018-1462-9. PubMed DOI PMC

Ding H., Bailey A.D., Jain M., Olsen H., Paten B. Gaussian mixture model-based unsupervised nucleotide modification number detection using nanopore-sequencing readouts. Bioinformatics. 2020;36:4928–4934. doi: 10.1093/bioinformatics/btaa601. PubMed DOI PMC

Ni P., Huang N., Zhang Z., Wang D.P., Liang F., Miao Y., Xiao C.L., Luo F., Wang J. DeepSignal: Detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics. 2019;35:4586–4595. doi: 10.1093/bioinformatics/btz276. PubMed DOI

Jayanthi V.S.P.K., Sankara A., Das A.B., Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017;91:15–23. doi: 10.1016/j.bios.2016.12.014. PubMed DOI

Khanmohammadi A., Aghaie A., Vahedi E., Qazvini A., Ghanei M., Afkhami A., Hajian A., Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta. 2020;206:120251. doi: 10.1016/j.talanta.2019.120251. PubMed DOI

Li J., Li S., Yang C.F. Electrochemical Biosensors for Cancer Biomarker Detection. Electroanalysis. 2012;24:2213–2229. doi: 10.1002/elan.201200447. DOI

Li Z.-M., Pi T., Yan X.-L., Tang X.-M., Deng R.-H., Zheng X.-J. Label-free and enzyme-free one-step rapid colorimetric detection of DNA methylation based on unmodified gold nanoparticles. Spectrochim Acta A Mol. Biomol. Spectr. 2020;238:118375. doi: 10.1016/j.saa.2020.118375. PubMed DOI

Cao A., Zhang C.-Y. Sensitive and Label-Free DNA Methylation Detection by Ligation-Mediated Hyperbranched Rolling Circle Amplification. Anal. Chem. 2012;84:6199–6205. doi: 10.1021/ac301186j. PubMed DOI

Zhang Y., Hu J., Zou X., Ma F., Qiu J.-G., Zhang C.-Y. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem. Commun. 2021;57:2073–2076. doi: 10.1039/D0CC08306B. PubMed DOI

Ma Y., Zhang H., Liu F., Wu Z., Lu S., Jin Q., Zhao J., Zhong X., Mao H. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method. Nanoscale. 2015;7:17547–17555. doi: 10.1039/C5NR04956C. PubMed DOI

Su F., Wang L., Sun Y., Liu C., Duan X., Li Z. Highly sensitive detection of CpG methylation in genomic DNA by AuNP-based colorimetric assay with ligase chain reaction. Chem. Commun. 2015;51:3371–3374. doi: 10.1039/C4CC07688E. PubMed DOI

Wang Z.-Y., Wang L.-J., Zhang Q., Tang B., Zhang C.-Y. Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chem. Sci. 2018;9:1330–1338. doi: 10.1039/C7SC04813K. PubMed DOI PMC

Sun Y., Sun Y., Tian W., Liu C., Gao K., Li Z. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction. Chem. Sci. 2018;9:1344–1351. doi: 10.1039/C7SC04975G. PubMed DOI PMC

Hiraoka D., Yoshida W., Abe K., Wakeda H., Hata K., Ikebukuro K. Development of a Method To Measure DNA Methylation Levels by Using Methyl CpG-Binding Protein and Luciferase-Fused Zinc Finger Protein. Anal. Chem. 2012;84:8259–8264. doi: 10.1021/ac3015774. PubMed DOI

Xue Q., Lv Y., Xu S., Zhang Y., Wang L., Li R., Yue Q., Li H., Gu X., Zhang S., et al. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation. Biosens. Bioelectron. 2015;66:547–553. doi: 10.1016/j.bios.2014.12.017. PubMed DOI

Dadmehr M., Hosseini M., Hosseinkhani S., Reza Ganjali M., Sheikhnejad R. Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens. Bioelectron. 2015;73:108–113. doi: 10.1016/j.bios.2015.05.062. PubMed DOI

Wang X., Chen F., Zhang D., Zhao Y., Wei J., Wang L., Song S., Fan C., Zhao Y. Single copy-sensitive electrochemical assay for circulating methylated DNA in clinical samples with ultrahigh specificity based on a sequential discrimination-amplification strategy. Chem. Sci. 2017;8:4764–4770. doi: 10.1039/C7SC01035D. PubMed DOI PMC

Povedano E., Montiel V.R.-V., Valverde A., Navarro-Villoslada F., Yáñez-Sedeño P., Pedrero M., Montero-Calle A., Barderas R., Peláez-García A., Mendiola M., et al. Versatile Electroanalytical Bioplatforms for Simultaneous Determination of Cancer-Related DNA 5-Methyl- and 5-Hydroxymethyl-Cytosines at Global and Gene-Specific Levels in Human Serum and Tissues. ACS Sens. 2019;4:227–234. doi: 10.1021/acssensors.8b01339. PubMed DOI

Haque M.H., Gopalan V., Yadav S., Islam M.N., Eftekhari E., Li Q., Carrascosa L.G., Nguyen N.-T., Lam A.K., Shiddiky M.J.A. Detection of regional DNA methylation using DNA-graphene affinity interactions. Biosens. Bioelectron. 2017;87:615–621. doi: 10.1016/j.bios.2016.09.016. PubMed DOI

Furst A.L., Muren N.B., Hill M.G., Barton J.K. Label-free electrochemical detection of human methyltransferase from tumors. Proc. Natl. Acad. Sci. USA. 2014;111:14985–14989. doi: 10.1073/pnas.1417351111. PubMed DOI PMC

Chen S., Su J., Zhao Z., Shao Y., Dou Y., Li F., Deng W., Shi J., Li Q., Zuo X., et al. DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. Nano Lett. 2020;20:7028–7035. doi: 10.1021/acs.nanolett.0c01898. PubMed DOI

Feng Q., Wang M., Qin L., Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sensors. 2019;4:2615–2622. doi: 10.1021/acssensors.9b00720. PubMed DOI

Gao F., Fan T., Ou S., Wu J., Zhang X., Luo J., Li N., Yao Y., Mou Y., Liao X., et al. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens. Bioelectron. 2018;99:201–208. doi: 10.1016/j.bios.2017.07.063. PubMed DOI

Lee J., Yoshida W., Abe K., Nakabayashi K., Wakeda H., Hata K., Marquette C.A., Blum L.J., Sode K., Ikebukuro K. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosens. Bioelectron. 2017;93:118–123. doi: 10.1016/j.bios.2016.09.060. PubMed DOI

Sedlackova E., Bytesnikova Z., Birgusova E., Svec P., Ashrafi A.M., Estrela P., Richtera L. Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay. Materials. 2020;13:4936. doi: 10.3390/ma13214936. PubMed DOI PMC

Campuzano S., Pingarrón J.M. Electrochemical Sensing of Cancer-related Global and Locus-specific DNA Methylation Events. Electroanalysis. 2018;30:1201–1216. doi: 10.1002/elan.201800004. DOI

Zhang Q., Wu Y., Xu Q., Ma F., Zhang C.Y. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens. Bioelectron. 2021;171:112712. doi: 10.1016/j.bios.2020.112712. PubMed DOI

Bartosik M., Hrstka R. Bioelectrochemistry of nucleic acids for early cancer diagnostics—Analysis of DNA methylation and detection of microRNAs. Rev. Anal. Chem. 2017;36 doi: 10.1515/revac-2016-0022. DOI

Feng Q., Qin L., Wang M., Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens. Bioelectron. 2020;149:111847. doi: 10.1016/j.bios.2019.111847. PubMed DOI

Povedano E., Vargas E., Montiel V.R.-V., Torrente-Rodríguez R.M., Pedrero M., Barderas R., Segundo-Acosta P.S., Peláez-García A., Mendiola M., Hardisson D., et al. Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Sci. Rep. 2018;8:6418. doi: 10.1038/s41598-018-24902-1. PubMed DOI PMC

Taylor S.M., Jones P.A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–779. doi: 10.1016/0092-8674(79)90317-9. PubMed DOI

Feinberg A.P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92. doi: 10.1038/301089a0. PubMed DOI

Baylin S.B., Höppener J.W., de Bustros A., Steenbergh P.H., Lips C.J., Nelkin B.D. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 1986;46:2917–2922. PubMed

Bestor T., Laudano A., Mattaliano R., Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988;203:971–983. doi: 10.1016/0022-2836(88)90122-2. PubMed DOI

Okano M., Bell D.W., Haber D.A., Li E. DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell. 1999;99:247–257. doi: 10.1016/S0092-8674(00)81656-6. PubMed DOI

Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466:1129–1133. doi: 10.1038/nature09303. PubMed DOI PMC

Dubin D.T., Taylor R.H. The methylation state of poly A-containing-messenger RNA from cultured hamster cells. Nucleic Acids Res. 1975;2:1653–1668. doi: 10.1093/nar/2.10.1653. PubMed DOI PMC

Zaccara S., Ries R.J., Jaffrey S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 2019;20:608–624. doi: 10.1038/s41580-019-0168-5. PubMed DOI

Zhou Y., Kong Y., Fan W., Tao T., Xiao Q., Li N., Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed. Pharmacother. 2020;131:110731. doi: 10.1016/j.biopha.2020.110731. PubMed DOI

Peixoto P., Cartron P.-F., Serandour A.A., Hervouet E. From 1957 to Nowadays: A Brief History of Epigenetics. Int. J. Mol. Sci. 2020;21:7571. doi: 10.3390/ijms21207571. PubMed DOI PMC

Wajed S.A., Laird P.W., DeMeester T.R. DNA methylation: An alternative pathway to cancer. Ann. Surg. 2001;234:10–20. doi: 10.1097/00000658-200107000-00003. PubMed DOI PMC

Shapiro R., Servis R.E., Welcher M. Reactions of Uracil and Cytosine Derivatives with Sodium Bisulfite. J. Am. Chem. Soc. 1970;92:422–424. doi: 10.1021/ja00705a626. DOI

Hayatsu H., Wataya Y., Kai K. Addition of sodium bisulfite to uracil and to cytosine. J. Am. Chem. Soc. 1970;92:724–726. doi: 10.1021/ja00706a062. PubMed DOI

Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt F., Grigg G.W., Molloy P.L., Paul C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA. 1992;89:1827–1831. doi: 10.1073/pnas.89.5.1827. PubMed DOI PMC

Parle-Mcdermott A., Harrison A. DNA Methylation: A Timeline of Methods and Applications. Front. Genet. 2011;2:74. PubMed PMC

Grützmann R., Molnar B., Pilarsky C., Habermann J.K., Schlag P.M., Saeger H.D., Miehlke S., Stolz T., Model F., Roblick U.J., et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE. 2008;3:e3759. doi: 10.1371/journal.pone.0003759. PubMed DOI PMC

Gonzalgo M.L., Pavlovich C.P., Lee S.M., Nelson W.G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res. 2003;9:2673–2677. PubMed

Esteller M., Garcia-Foncillas J., Andion E., Goodman S.N., Hidalgo O.F., Vanaclocha V., Baylin S.B., Herman J.G. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 2000;343:1350–1354. doi: 10.1056/NEJM200011093431901. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

New Trends in the Detection of Gynecological Precancerous Lesions and Early-Stage Cancers

. 2021 Dec 17 ; 13 (24) : . [epub] 20211217

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...