• This record comes from PubMed

Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo

. 2021 Apr 27 ; 10 (5) : . [epub] 20210427

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-00121S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841 EFSA-CDN
SVV 260 550 Univerzita Karlova v Praze

2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.

See more in PubMed

Fenclová M., Stránská-Zachariášová M., Beneš F., Novaková A., Jonatová P., Křen V., Vítek L., Hajslová J. Liquid chromatography–drift tube ion mobility–mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal. Bioanal. Chem. 2020;412:819–832. doi: 10.1007/s00216-019-02274-3. PubMed DOI

Petrásková L., Káňová K., Biedermann D., Křen V., Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC

Qin N., Sasaki T., Li W., Wang J., Zhang X., Li D., Li Z., Cheng M., Hua H., Koike K. Identification of flavonolignans from Silybum marianum seeds as allosteric protein tyrosine phosphatase 1B inhibitors. J. Enzym. Inhib. Med. Chem. 2018;33:1283–1291. doi: 10.1080/14756366.2018.1497020. PubMed DOI PMC

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Biedermann D., Moravcová V., Valentová K., Kuzma M., Petrásková L., Císařová I., Křen V. Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochem. Lett. 2019;30:14–20. doi: 10.1016/j.phytol.2019.01.006. DOI

Valentová K., Purchartová K., Rydlová L., Roubalová L., Biedermann D., Petrásková L., Křenková A., Pelantová H., Holečková-Moravcová V., Tesařová E., et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: Preparation and properties. Int. J. Mol. Sci. 2018;19:2349. doi: 10.3390/ijms19082349. PubMed DOI PMC

Viktorová J., Dobiasová S., Řehořová K., Biedermann D., Káňová K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:303. doi: 10.3390/antiox8080303. PubMed DOI PMC

Viktorová J., Stránská-Zachariášová M., Fenclová M., Vítek L., Hajšlová J., Křen V., Ruml T. Complex evaluation of antioxidant capacity of Milk thistle dietary supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC

Huber A., Thongphasuk P., Erben G., Lehmann W.-D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. BBA Gen. Subj. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI

Gabrielová E., Křen V., Jabůrek M., Modrianský M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. doi: 10.33549/physiolres.932703. PubMed DOI

Thongphasuk P., Stremmel W., Chamulitrat W. Potent direct or TNF-α-promoted anticancer effects of 2,3-dehydrosilybin: Comparison study with silybin. Chemotherapy. 2008;54:23–30. doi: 10.1159/000112314. PubMed DOI

Thongphasuk P., Stremmel W., Chamulitrat W. 2,3-Dehydrosilybin is a better DNA topoisomerase I inhibitor than its parental silybin. Chemotherapy. 2009;55:42–48. doi: 10.1159/000175466. PubMed DOI

Juráňová J., Aury-Landas J., Boumediene K., Baugé C., Biedermann D., Ulrichová J., Franková J. Modulation of skin inflammatory response by active components of silymarin. Molecules. 2019;24:123. doi: 10.3390/molecules24010123. PubMed DOI PMC

Vostálová J., Tinková E., Biedermann D., Kosina P., Ulrichová J., Rajnochová Svobodová A. Skin protective activity of silymarin and its flavonolignans. Molecules. 2019;24:1022. doi: 10.3390/molecules24061022. PubMed DOI PMC

Dvořák Z., Vrzal R., Ulrichová J. Silybin and dehydrosilybin inhibit cytochrome P450 1A1 catalytic activity: A study in human keratinocytes and human hepatoma cells. Cell Biol. Toxicol. 2006;22:81–90. doi: 10.1007/s10565-006-0017-0. PubMed DOI

Filippopoulou K., Papaevgeniou N., Lefaki M., Paraskevopoulou A., Biedermann D., Křen V., Chondrogianni N. 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic. Biol. Med. 2017;103:256–267. doi: 10.1016/j.freeradbiomed.2016.12.042. PubMed DOI

Tilley C., Deep G., Agarwal C., Wempe M.F., Biedermann D., Valentová K., Křen V., Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol. Carcinog. 2016;55:3–14. doi: 10.1002/mc.22253. PubMed DOI PMC

Zarrelli A., Sgambato A., Petito V., De Napoli L., Previtera L., Di Fabio G. New C-23 modified of silybin and 2,3-dehydrosilybin: Synthesis and preliminary evaluation of antioxidant properties. Bioorg. Med. Chem. Lett. 2011;21:4389–4392. doi: 10.1016/j.bmcl.2011.06.049. PubMed DOI

Jiang Z., Sekhon A., Oka Y., Chen G., Alrubati N., Kaur J., Orozco A., Zhang Q., Wang G., Chen Q.-H. 23-O-Substituted-2,3-dehydrosilybins selectively suppress androgen receptor-positive LNCaP prostate cancer cell proliferation. Nat. Prod. Commun. 2020;15:1934578X20922326. doi: 10.1177/1934578x20922326. DOI

Wen Y.-J., Zhou Z.-Y., Zhang G.-L., Lu X.-X. Metal coordination protocol for the synthesis of-2,3-dehydrosilybin and 19-O-demethyl-2,3-dehydrosilybin from silybin and their antitumor activities. Tetrahedron Lett. 2018;59:1666–1669. doi: 10.1016/j.tetlet.2018.03.052. DOI

Gažák R., Valentová K., Fuksová K., Marhol P., Kuzma M., Medina M.Á., Oborná I., Ulrichová J., Křen V. Synthesis and antiangiogenic activity of new silybin galloyl esters. J. Med. Chem. 2011;54:7397–7407. doi: 10.1021/jm201034h. PubMed DOI

Karas D., Gažák R., Valentová K., Chambers C.S., Pivodová V., Biedermann D., Křenková A., Oborná I., Kuzma M., Cvačka J., et al. Effects of 2,3-dehydrosilybin and its galloyl ester and methyl ether derivatives on human umbilical vein endothelial cells. J. Nat. Prod. 2016;79:812–820. doi: 10.1021/acs.jnatprod.5b00905. PubMed DOI

Tvrdý V., Catapano M.C., Rawlik T., Karlíčková J., Biedermann D., Křen V., Mladěnka P., Valentová K. Interaction of isolated silymarin flavonolignans with iron and copper. J. Inorg. Biochem. 2018;189:115–123. doi: 10.1016/j.jinorgbio.2018.09.006. PubMed DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Gažák R., Fuksová K., Marhol P., Kuzma M., Agarwal R., Křen V. Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture. Process Biochem. 2013;48:184–189. doi: 10.1016/j.procbio.2012.11.006. DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Mladěnka P., Macáková K., Zatloukalová L., Řeháková Z., Singh B.K., Prasad A.K., Parmar V.S., Jahodář L., Hrdina R., Saso L. In vitro interactions of coumarins with iron. Biochimie. 2010;92:1108–1114. doi: 10.1016/j.biochi.2010.03.025. PubMed DOI

Říha M., Karlíčková J., Filipský T., Macáková K., Hrdina R., Mladěnka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J. Inorg. Biochem. 2013;123:80–87. doi: 10.1016/j.jinorgbio.2013.02.011. PubMed DOI

Catapano M.C., Protti M., Fontana T., Mandrioli R., Mladěnka P., Mercolini L. An original HPLC method with coulometric detection to monitor hydroxyl radical generation via Fenton chemistry. Molecules. 2019;24:3066. doi: 10.3390/molecules24173066. PubMed DOI PMC

Mladěnka P., Karlíčková J., Hrubša M., Veljović E., Muratović S., Carazo A., Shivling Mali A., Špirtović-Halilović S., Saso L., Pour M., et al. Interaction of 2,6,7-trihydroxy-xanthene-3-ones with iron and copper, and biological effect of the most active derivative on breast cancer cells and erythrocytes. Appl. Sci. 2020;10:4846. doi: 10.3390/app10144846. DOI

Chan F.K., Moriwaki K., De Rosa M.J. Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol. Biol. 2013;979:65–70. doi: 10.1007/978-1-62703-290-2_7. PubMed DOI PMC

Macáková K., Catapano M.C., Tvrdý V., Klimková K., Karlíčková J., Mladěnka P. Hematoxylin assay of cupric chelation can give false positive results. J. Trace Elem. Med. Biol. 2019;52:29–36. doi: 10.1016/j.jtemb.2018.10.022. PubMed DOI

Svobodová A., Zdařilová A., Walterová D., Vostálová J. Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J. Dermatol. Sci. 2007;48:213–224. doi: 10.1016/j.jdermsci.2007.06.008. PubMed DOI

Agarwal C., Wadhwa R., Deep G., Biedermann D., Gažák R., Křen V., Agarwal R. Anti-cancer efficacy of silybin derivatives—A structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC

Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI

Abourashed E.A., Mikell J.R., Khan I.A. Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg. Med. Chem. 2012;20:2784–2788. doi: 10.1016/j.bmc.2012.03.046. PubMed DOI

Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI

Harper E., Seifter S. Studies on the mechanism of action of collagenase: Inhibition by cysteine and other chelating agents. Isr. J. Chem. 1974;12:515–528. doi: 10.1002/ijch.197400041. DOI

Zatloukalová M., Vavříková E., Pontinha A.D.R., Coufal J., Křen V., Fojta M., Ulrichová J., Oliveira-Brett A.M., Vacek J. Flavonolignan conjugates as DNA-binding ligands and topoisomerase i inhibitors: Electrochemical and electrophoretic approaches. Electroanalysis. 2016;28:2866–2874. doi: 10.1002/elan.201600146. DOI

Laughton M.J., Halliwell B., Evans P.J., Hoult J.R. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem. Pharmacol. 1989;38:2859–2865. doi: 10.1016/0006-2952(89)90442-5. PubMed DOI

Goldman M., Ali M. Wilson’s disease presenting as Heinz-body hemolytic anemia. Can. Med. Assoc. J. 1991;145:971–972. PubMed PMC

Iser J.H., Stevens B.J., Stening G.F., Hurley T.H., Smallwood R.A. Hemolytic anemia of Wilson’s disease. Gastroenterology. 1974;67:290–293. doi: 10.1016/S0016-5085(19)32893-8. PubMed DOI

Saran M., Michel C., Stettmaier K., Bors W. Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions. Free Radic. Res. 2000;33:567–579. doi: 10.1080/10715760000301101. PubMed DOI

Aaseth J., Skaug V., Alexander J. Haemolytic activity of copper as influenced by chelating agents, albumine and chromium. Acta Pharmacol. Toxicol. 1984;54:304–310. doi: 10.1111/j.1600-0773.1984.tb01935.x. PubMed DOI

Khan H.Y., Zubair H., Ullah M.F., Ahmad A., Hadi S. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: Implications for a cancer preventive mechanism. Biometals. 2011;24:1169–1178. doi: 10.1007/s10534-011-9475-9. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...