ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors

. 2021 Aug ; 519 () : 206-209. [epub] 20210503

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33957095
Odkazy

PubMed 33957095
PubMed Central PMC8091801
DOI 10.1016/j.cca.2021.04.024
PII: S0009-8981(21)00149-2
Knihovny.cz E-zdroje

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread from China in 2019/2020 to all continents. Significant geographical and ethnic differences were described, and host genetic background seems to be important for the resistance to and mortality of COVID-19. Angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism (rs4646994) is one of the candidates with the potential to affect infection symptoms and mortality. METHODS: In our study, we successfully genotyped 408 SARS-CoV-2-positive COVID-19 survivors (163 asymptomatic and 245 symptomatic) and compared them with a population-based DNA bank of 2,559 subjects. RESULTS: The frequency of ACE I/I homozygotes was significantly increased in COVID-19 patients compared with that in controls (26.2% vs. 21.2%; P = 0.02; OR [95% CI] = 1.55 [1.17-2.05]. Importantly, however, the difference was driven just by the symptomatic subjects (29.0% vs. 21.2% of the I/I homozygotes; P = 0.002; OR [95% CI] = 1.78 [1.22-2.60]). The genotype distribution of the ACE genotypes was almost identical in population controls and asymptomatic SARS-CoV-2-positive patients (P = 0.76). CONCLUSIONS: We conclude that ACE I/D polymorphism could have the potential to predict the severity of COVID-19, with I/I homozygotes being at increased risk of symptomatic COVID-19.

Zobrazit více v PubMed

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5 (2020) 536-44. https://doi: 10.1038/s41564-020-0695-z. PubMed PMC

Dhama K., Khan S., Tiwari R., Sircar S., Bhat S., Malik Y.S., Singh K.P., Chaicumpa W., Bonilla-Aldana D.K., Rodriguez-Morales A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020;33 doi: 10.1128/CMR.00028-20. PubMed DOI PMC

Berekaa M.M. Insights into the COVID-19 pandemic: Origine, pathogenesis, diagnosis, and therapeutic interventions. Front. Biosci. (Elite Ed) 2021;13:117–139. PubMed

C.E. Hastie, D.F. Mackay, F. Ho, C.A. Celis-Morales, S.V. Katikireddi, C.L. Niedzwiedz, B.D. Jani, P. Welsh, F.S. Mair, S.R. Gray, C.A. O'Donnell, J.M. Gill, N. Sattar, J.P. Pell. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab. Syndr. 14 (2020) 561–5. Erratum. In: Diabetes Metab Syndr. 2020;14:1315–1316. https://doi/org/10.1016/j.dsx.2020.04.050. PubMed DOI

Raisi-Estabragh Z., McCracken C., Bethell M.S., Cooper J., Cooper C., Caulfield M.J., Munroe P.B., Harvey N.C., Petersen S.E. Greater risk of severe COVID-19 in Black, Asian and minority ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J. Public Health (Oxf) 2020;42:451–460. doi: 10.1093/pubmed/fdaa095. PubMed DOI PMC

Di Maria E., Latini A., Borgiani P., Novelli G. Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): rapid systematic review and field synopsis. Hum. Genomics. 2020;1430 doi: 10.1186/s40246-020-00280-6. PubMed DOI PMC

Ovsyannikova I.G., Haralambieva I.H., Crooke S.N., Poland G.A., Kennedy R.B. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol. Rev. 2020;296:205–219. doi: 10.1111/imr.12897. PubMed DOI PMC

Delanghe J.R., Speeckaert M.M., De Buyzere M.L. COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clin. Chem. Lab. Med. 2020;58:1125–1126. doi: 10.1515/cclm-2020-0425. PubMed DOI

Mohammadpour S., Torshizi Esfahani A., Halaji M., Lak M., Ranjbar R. An updated review of the association of host genetic factors with susceptibility and resistance to COVID-19. J. Cell. Physiol. 2020 doi: 10.1002/jcp.29868. PubMed DOI PMC

Bellone M., Calvisi S.L. ACE polymorphism and COVID-19-related mortality in Europe. Mol. Med. (Berl). 2020;98:1505–1509. doi: 10.1007/s00109-020-01981-0. PubMed DOI PMC

Hoffmann M., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181 doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Chiu R.W., Tang N.L., Hui D.S., Chung G.T., Chim S.S., Chan K.C., Sung Y.M., Chan L.Y., Tong Y.K., Lee W.S., Chan P.K., Lo Y.M. ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin. Chem. 2004;50:1683–1686. doi: 10.1373/clinchem.2004.035436. PubMed DOI PMC

Cambien F., Alhenc-Gelas F., Herbeth B., Andre J.L., Rakotovao R., Gonzales M.F., Allegrini J., Bloch C. Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study. Am. J. Hum. Genet. 1988;43:774–780. PubMed PMC

J.A. Hubáček, R. Poledne. [Insertion/deletion polymorphism in the gene for angiotensine-converting enzyme and cardiovascular disease]. Cor Vasa. 41 (1999) 149-54. Article in Czech.

Agerholm-Larsen B., Nordestgaard B.G., Tybjaerg-HansenA A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler. Thromb. Vasc. Biol. 2000;20:484–492. doi: 10.1161/01.atv.20.2.484. PubMed DOI

B. Mayer, H. Schunkert, ACE-Gen-Polymorphismus und kardiovaskuläre Erkrankungen [ACE gene polymorphism and cardiovascular diseases]. Herz. 25 (2000) 1-6. Article in German. 10.1007/BF03044118. PubMed DOI

Hubacek J.A., Dusek L., Majek O., Adamek V., Cervinkova T., Dlouha D., Pavel J., Adamkova V. CCR5Δ32 deletion as a protective factor in Czech first-wave COVID-19 subjects. Physiol. Res. 2021;70:111–115. doi: 10.33549/physiolres.934647. PubMed DOI PMC

Cífková R., Skodová Z., Bruthans J., Adámková V., Jozífová M., Galovcová M., Wohlfahrt P., Krajcoviechová A., Poledne R., Stávek P. LánskáV. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010;211:676–681. doi: 10.1016/j.atherosclerosis.2010.04.007. PubMed DOI

Hubacek J.A., Stanek V., Gebauerová M., Pilipcincová A., Dlouhá D., Poledne R., Aschermann M., Skalická H., Matousková J., Kruger A., Penicka M., Hrabáková H., Veselka J., Hájek P., Lánská V., Adámková V., Pitha J. A FTO variant and risk of acute coronary syndrome. Clin. Chim. Acta. 2010;411:1069–1072. doi: 10.1016/j.cca.2010.03.037. PubMed DOI

Hubacek J.A., Pitha J., Podrapská I., Sochman J., Adámková V., Lánská V., Poledne R. Insertion/deletion polymorphism in the angiotensin-converting enzyme gene in myocardial infarction survivors. Med. Sci. Monit. 2000;6:503–506. PubMed

Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for DNA extraction from human nucleated cells. Nucleic Acid Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC

Rigat B., Hubert C., Corvol P., Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1) Nucleic Acids Res. 1992;20:1433. doi: 10.1093/nar/20.6.1433-a. PubMed DOI PMC

Ueda S., Heeley R.P., Lees K.R., Elliott H.L., Connell J.M. Mistyping of the human angiotensin-converting enzyme gene polymorphism: frequency, causes and possible methods to avoid errors in typing. J. Mol. Endocrinol. 1996;17:27–30. doi: 10.1677/jme.0.0170027. PubMed DOI

Yamamoto N., Ariumi Y., Nishida N., Yamamoto R., Bauer G., Gojobori T., Shimotohno K., Mizokami M. SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene. 2020;758 doi: 10.1016/j.gene.2020.144944. PubMed DOI PMC

Saadat M. No significant correlation between ACE Ins/Del genetic polymorphism and COVID-19 infection. Clin. Chem. Lab. Med. 2020;58:1127–1128. doi: 10.1515/cclm-2020-0577. PubMed DOI

Delanghe J.R., Speeckaert M.M., De Buyzere M.L. The host's angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin. Chim. Acta. 2020;505:192–193. doi: 10.1016/j.cca.2020.03.031. PubMed DOI PMC

Jacobs M., Lahousse L., Van Eeckhoutte H.P., Wijnant S.R.A., Delanghe J.R., Brusselle G.G., Bracke K.R. Effect of ACE1 polymorphism rs1799752 on protein levels of ACE2, the SARS-CoV-2 entry receptor, in alveolar lung epithelium. ERJ. Open. Res. 2021;7:00940–2020. doi: 10.1183/23120541.00940-2020. PubMed DOI PMC

Verma S., Abbas M., Verma S., Khan F.H., Raza S.T., Siddiqi Z., Ahmad I., Mahdi F. Impact of I/D polymorphism of angiotensin-converting enzyme 1 (ACE1) gene on the severity of COVID-19 patients. Infect. Genet. Evol. 2021;91 doi: 10.1016/j.meegid.2021.104801. PubMed DOI PMC

Pati H., Mahto S., Padhi A.K. Panda. ACE deletion allele is associated with susceptibility to SARS-CoV-2 infection and mortality rate: An epidemiological study in the Asian population. Clin. Chim. Acta. 2020;510:455–458. doi: 10.1016/j.cca.2020.08.008. PubMed DOI PMC

Hippisley-Cox J., Young D., Coupland C., Channon K.M., Tan P.S., Harrison D.A., Rowan K., Aveyard P., Pavord I.D., Watkinson P.J. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020;106:1503–1511. doi: 10.1136/heartjnl-2020-317393. PubMed DOI PMC

Severe Covid-19 GWAS Group, D. Ellinghaus, F. Degenhardt, L. Bujanda, M. Buti, A. Albillos, P. Invernizzi, J. Fernández, D. Prati, G. Baselli, R. Asselta, Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med. 383 (2020) 1522-34. https://doi: 10.1056/NEJMoa2020283. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...