Dynamic miRNA changes during the process of epileptogenesis in an infantile and adult-onset model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33958654
PubMed Central
PMC8102630
DOI
10.1038/s41598-021-89084-9
PII: 10.1038/s41598-021-89084-9
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- dospělí MeSH
- epilepsie temporálního laloku etiologie metabolismus MeSH
- hipokampus metabolismus MeSH
- kojenec MeSH
- krysa rodu Rattus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- potkani Wistar MeSH
- regulace genové exprese MeSH
- status epilepticus metabolismus MeSH
- transkriptom MeSH
- věk při počátku nemoci MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- kojenec MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
Temporal lobe epilepsy (TLE) is the most common epilepsy type. TLE onset in infancy aggravates features like severity, drug responsiveness, or development of comorbidities. These aggravations may arise from altered micro RNA (miRNA) expression specific to the early onset of the disease. Although the miRNA involvement in TLE is widely studied, the relationship between the onset-age and miRNA expression has not been addressed. Here, we investigated the miRNA profile of infantile and adult-onset TLE in rats combining sequencing and PCR. Since miRNA expression changes with the disease progression, we scrutinized miRNA dynamics across three stages: acute, latent, and chronic. We report that infantile-onset TLE leads to changes in the expression of fewer miRNAs across these stages. Interestingly, the miRNA profile in the acute stage of infantile-onset TLE overlaps in dysregulation of miR-132-5p, -205, and -211-3p with the chronic stage of the disease starting in adulthood. The analysis of putative targets linked the majority of dysregulated miRNAs with pathways involved in epilepsy. Our profiling uncovered miRNA expression characteristic for infantile and adulthood-onset epileptogenesis, suggesting the distinct biology underlying TLE in the onset age-dependent matter. Our results indicate the necessity of addressing the onset age as an important parameter in future epilepsy research.
Zobrazit více v PubMed
Wei S-H, Lee W-T. Comorbidity of childhood epilepsy. J. Formos. Med. Assoc. 2015;114:1031–1038. doi: 10.1016/j.jfma.2015.07.015. PubMed DOI
Cormack F, et al. The development of intellectual abilities in pediatric temporal lobe epilepsy. Epilepsia. 2007;48:201–204. doi: 10.1111/j.1528-1167.2006.00904.x. PubMed DOI
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Coolen M, Bally-Cuif L. MicroRNAs in brain development and physiology. Curr. Opin. Neurobiol. 2009;19:461–470. doi: 10.1016/j.conb.2009.09.006. PubMed DOI
Alsharafi WA, Xiao B, Abuhamed MM, Luo Z. miRNAs: biological and clinical determinants in epilepsy. Front. Mol. Neurosci. 2015;8:59. doi: 10.3389/fnmol.2015.00059. PubMed DOI PMC
Henshall DC, et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016;15:1368–1376. doi: 10.1016/S1474-4422(16)30246-0. PubMed DOI
Bencurova P, et al. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: whole miRNome profiling of human hippocampus. Epilepsia. 2017;58:1782–1793. doi: 10.1111/epi.13870. PubMed DOI
Kubová H, et al. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur. J. Neurosci. 2004;19:3255–3265. doi: 10.1111/j.0953-816X.2004.03410.x. PubMed DOI
Kubová H, Mareš P. Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience. 2013;235:232–249. doi: 10.1016/j.neuroscience.2012.12.055. PubMed DOI
Baloun J, et al. Epilepsy miRNA profile depends on the age of onset in humans and rats. Front. Neurosci. 2020;14:924. doi: 10.3389/fnins.2020.00924. PubMed DOI PMC
Rajkumar AP, et al. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genom. 2015;16:1–8. doi: 10.1186/s12864-015-1767-y. PubMed DOI PMC
Benes V, et al. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci. Rep. 2015;5:11590. doi: 10.1038/srep11590. PubMed DOI PMC
Bustin SA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
miRDB - MicroRNA Target Prediction And Functional Study Database (accessed 19 December 2018); http://mirdb.org/cgi-bin/search.cgi.
Huang HY, et al. MiRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucl. Acids Res. 2020;48:D148–D154. PubMed PMC
Vlachos IS, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucl. Acids Res. 2015;43:W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC
Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications: fig. 1. Bioinformatics. 2015;31:3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC
Aronica E, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur. J. Neurosci. 2010;31:1100–1107. doi: 10.1111/j.1460-9568.2010.07122.x. PubMed DOI
Clancy B, Finlay BL, Darlington RB, Anand KJS. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28:931–937. doi: 10.1016/j.neuro.2007.01.014. PubMed DOI PMC
Mathern GW, Adelson PD, Cahan LD, Leite JP. Hippocampal neuron damage in human epilepsy: Meyer’s hypothesis revisited. Prog. Brain Res. 2002;135:237–251. doi: 10.1016/S0079-6123(02)35023-4. PubMed DOI
Nairismagi J, Pitkanen A, Kettunen MI, Kauppinen RA, Kubova H. Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. Epilepsia. 2006;47:479–488. doi: 10.1111/j.1528-1167.2006.00455.x. PubMed DOI
Kubová H, et al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J. Neurosci. 2001;21:3593–3599. doi: 10.1523/JNEUROSCI.21-10-03593.2001. PubMed DOI PMC
Rutten A, et al. Memory impairment following status epilepticus in immature rats: time-course and environmental effects. Eur. J. Neurosci. 2002;16:501–513. doi: 10.1046/j.1460-9568.2002.02103.x. PubMed DOI
Ashhab MU, et al. microRNA s (9, 138, 181A, 221, and 222) and mesial temporal lobe epilepsy in developing brains. Transl. Neurosci. 2013;4:357–362. doi: 10.2478/s13380-013-0128-z. DOI
Gan J, et al. MiRNA expression profiles in the hippocampi of immature rats following status epilepticus. Int. J. Clin. Exp. Pathol. 2017;10:1429–1442.
Peng J, et al. Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J. Mol. Neurosci. 2013;50:291–297. doi: 10.1007/s12031-013-9953-3. PubMed DOI
Ren L, Zhu R, Li X. Silencing miR-181a produces neuroprotection against hippocampus neuron cell apoptosis post-status epilepticus in a rat model and in children with temporal lobe epilepsy. Genet. Mol. Res. 2016 doi: 10.4238/gmr.15017798. PubMed DOI
Omran A, et al. Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia. 2012;53:1215–1224. doi: 10.1111/j.1528-1167.2012.03540.x. PubMed DOI
Korotkov A, Mills JD, Gorter JA, van Vliet EA, Aronica E. Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci. Rep. 2017;7:11592. doi: 10.1038/s41598-017-11510-8. PubMed DOI PMC
Ashhab MU, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J. Mol. Neurosci. 2013;51:950–958. doi: 10.1007/s12031-013-0013-9. PubMed DOI
McKiernan RC, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS ONE. 2012;7:e35921. doi: 10.1371/journal.pone.0035921. PubMed DOI PMC
Kaalund SS, et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia. 2014;55:2017–2027. doi: 10.1111/epi.12839. PubMed DOI
Wang X, et al. Intracerebroventricular injection of miR-146a relieves seizures in an immature rat model of lithium-pilocarpine induced status epilepticus. Epilepsy Res. 2018;139:14–19. doi: 10.1016/j.eplepsyres.2017.10.006. PubMed DOI
Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS ONE. 2010;5:e15497. doi: 10.1371/journal.pone.0015497. PubMed DOI PMC
Wayman GA, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc. Natl. Acad. Sci. 2008;105:9093–9098. doi: 10.1073/pnas.0803072105. PubMed DOI PMC
Shaked I, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity. 2009;31:965–973. doi: 10.1016/j.immuni.2009.09.019. PubMed DOI
Jimenez-Mateos EM, et al. miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am. J. Pathol. 2011;179:2519–2532. doi: 10.1016/j.ajpath.2011.07.036. PubMed DOI PMC
Zhang H, et al. Antagomirs targeting miR-142–5p attenuate pilocarpine-induced status epilepticus in mice. Exp. Cell Res. 2020;393:112089. doi: 10.1016/j.yexcr.2020.112089. PubMed DOI
Venø MT, et al. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc. Natl. Acad. Sci. U. S. A. 2020;117:15977–15988. doi: 10.1073/pnas.1919313117. PubMed DOI PMC
Zhao J, Yang M, Li Q, Pei X, Zhu X. MiR-132-5p regulates apoptosis and autophagy in MPTP model of Parkinson’s disease by targeting ULK1. NeuroReport. 2020;31:959–965. doi: 10.1097/WNR.0000000000001494. PubMed DOI
Petrović N, Nakashidze I, Nedeljković M. Breast cancer response to therapy: can micrornas lead the way? J. Mammary Gland Biol. Neoplasia. 2021 doi: 10.1007/s10911-021-09478-3. PubMed DOI
Yao Y, Zuo J, Wei Y. Targeting of TRX2 by miR-330-3p in melanoma inhibits proliferation. Biomed. Pharmacother. 2018;107:1020–1029. doi: 10.1016/j.biopha.2018.08.058. PubMed DOI
Chen ZZ, Zhang XD, Chen Y, Wu YB. The role of circulating miR-146a in patients with rheumatoid arthritis treated by Tripterygium wilfordii Hook F. Med. U. S. A. 2017;96:e6775. PubMed PMC
Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, Lopez-Lopez E, Garcia-Orad Á. A systematic review of MicroRNA expression as biomarker of late-onset Alzheimer’s disease. Mol. Neurobiol. 2019;56:8376–8391. doi: 10.1007/s12035-019-01676-9. PubMed DOI
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J. Neurol. Sci. 2021;420:117202. doi: 10.1016/j.jns.2020.117202. PubMed DOI
Juźwik CA, et al. microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog. Neurobiol. 2019;182:101664. doi: 10.1016/j.pneurobio.2019.101664. PubMed DOI
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 2014;108:995–1012. doi: 10.1016/j.eplepsyres.2014.04.001. PubMed DOI PMC
Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 2012;100:656–664. doi: 10.1016/j.pbb.2011.08.008. PubMed DOI PMC
Salman MM, et al. Transcriptome analysis suggests a role for the differential expression of cerebral aquaporins and the MAPK signalling pathway in human temporal lobe epilepsy. Eur. J. Neurosci. 2017;46:2121–2132. doi: 10.1111/ejn.13652. PubMed DOI
Zhu Q, et al. Decreased expression of Ras-GRF1 in the brain tissue of the intractable epilepsy patients and experimental rats. Brain Res. 2013;1493:99–109. doi: 10.1016/j.brainres.2012.11.033. PubMed DOI
Nateri AS, et al. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J. 2007;26:4891–4901. doi: 10.1038/sj.emboj.7601911. PubMed DOI PMC
Yang J, et al. Wnt/β-catenin signaling mediates the seizure-facilitating effect of postischemic reactive astrocytes after pentylenetetrazole-kindling. Glia. 2016;64:1083–1091. PubMed
Bar-Klein G, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann. Neurol. 2014;75:864–875. doi: 10.1002/ana.24147. PubMed DOI PMC
Hu B, et al. Changes in TrkB-ERK1/2-CREB/Elk-1 pathways in hippocampal mossy fiber organization after traumatic brain injury. J. Cereb. Blood Flow Metab. 2004 doi: 10.1097/01.WCB.0000125888.56462.A1. PubMed DOI
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed DOI PMC
Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods. 2013;63:41–49. doi: 10.1016/j.ymeth.2013.06.027. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data (accessed 21 September 2018); http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl. Acids Res. 2014;42:D68–D73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
R Core Team . R: A language and environment for statistical computing. R Core Team; 2016.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Smith JR, et al. The year of the rat: the rat genome database at 20: a multi-species knowledgebase and analysis platform. Nucl. Acids Res. 2020;48:D731–D742. doi: 10.1093/nar/gkaa239. PubMed DOI PMC
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague