Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33995911
PubMed Central
PMC8091179
DOI
10.1016/j.csbj.2021.04.011
PII: S2001-0370(21)00122-7
Knihovny.cz E-zdroje
- Klíčová slova
- Fluorescence in situ hybridization, Heterochromatin, Holocentric chromosomes, LINE elements, Oxford Nanopore sequencing, Satellite DNA,
- Publikační typ
- časopisecké články MeSH
Repeat-rich regions of higher plant genomes are usually associated with constitutive heterochromatin, a specific type of chromatin that forms tightly packed nuclear chromocenters and chromosome bands. There is a large body of cytogenetic evidence that these chromosome regions are often composed of tandemly organized satellite DNA. However, comparatively little is known about the sequence arrangement within heterochromatic regions, which are difficult to assemble due to their repeated nature. Here, we explore long-range sequence organization of heterochromatin regions containing the major satellite repeat CUS-TR24 in the holocentric plant Cuscuta europaea. Using a combination of ultra-long read sequencing with assembly-free sequence analysis, we reveal the complex structure of these loci, which are composed of short arrays of CUS-TR24 interrupted frequently by emerging simple sequence repeats and targeted insertions of a specific lineage of LINE retrotransposons. These data suggest that the organization of satellite repeats constituting heterochromatic chromosome bands can be more complex than previously envisioned, and demonstrate that heterochromatin organization can be efficiently investigated without the need for genome assembly.
Zobrazit více v PubMed
Allshire R.C., Madhani H.D. Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol. 2018;19:229–244. PubMed PMC
Burrow A.A., Marullo A., Holder L.R., Wang Y.-H. Secondary structure formation and DNA instability at fragile site FRA16B. Nucleic Acids Res. 2010;38:2865–2877. PubMed PMC
Cechova M., Harris R.S., Tomaszkiewicz M., Arbeithuber B., Chiaromonte F., Makova K.D. High satellite repeat turnover in great apes studied with short- and long-read technologies. Mol. Biol. Evol. 2019;36:2415–2431. PubMed PMC
Chang C.-H., Chavan A., Palladino J., Wei X., Martins N.M.C., Santinello B. Islands of retroelements are the major components of Drosophila centromeres. PLoS Biol. 2019;17 PubMed PMC
Chueh A.C., Northrop E.L., Brettingham-Moore K.H., Choo K.H.A., Wong L.H., Bickmore W.A. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet. 2009;5 PubMed PMC
Comai L., Maheshwari S., Marimuthu M.P. Plant centromeres. Curr Opin Plant Biol. 2017;36:158–167. PubMed
Cost G.J., Boeke J.D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry. 1998;37:18081–18093. PubMed
van Dijk E.L., Jaszczyszyn Y., Naquin D., Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34:666–681. PubMed
Duda Z., Trusiak S., O’Neill R. Vol. 56. Springer; Progress iCham: 2017. pp. 257–281. (Centromere Transcription: Means and Motive. In: Centromeres and Kinetochores). PubMed
Dumont M., Fachinetti D. Vol. 112. Springer; Cham: 2017. pp. 305–336. (DNA Sequences in Centromere Formation and Function. In: Centromeres and Kinetochores). PubMed
Edgar R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 2004;5:1–19. PubMed PMC
Fuchs J., Strehl S., Brandes A., Schweizer D., Schubert I. Molecular-cytogenetic characterization of the Vicia faba genome–heterochromatin differentiation, replication patterns and sequence localization. Chromosome Res. 1998;6:219–230. PubMed
Garrido-Ramos M. Satellite DNA: An evolving topic. Genes. 2017;8:230. PubMed PMC
Garrido-Ramos M.A. Satellite DNA in plants: More than just rubbish. Cytogenet Genome Res. 2015;146:153–170. PubMed
Gong Z., Wu Y., Koblízková A., Torres G.A., Wang K., Iovene M. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell. 2012;24:3559–3574. PubMed PMC
Gouy M., Guindon S., Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. PubMed
Hara M., Fukagawa T. Vol. 112. Springer; Cham: 2017. pp. 29–57. (Critical Foundation of the Kinetochore: The Constitutive Centromere-Associated Network (CCAN). In: Centromeres and Kinetochores). PubMed
Harris R.S. Improved Pairwise Alignment of Genomic DNA. Pennsylvania State University; University Park, PAUnited States: 2007.
Heckmann S., Macas J., Kumke K., Fuchs Jörg, Schubert V., Ma L. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J. 2013;73:555–565. PubMed
Heitkam T., Holtgräwe D., Dohm J.C., Minoche André.E., Himmelbauer H., Weisshaar B. Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J. 2014;79:385–397. PubMed
Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosom Res. 2019;27:153–165. PubMed
Karafiátová M., Bartoš J., Doležel J. Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH. Methods Mol Biol. 2016;1429:49–64. PubMed
Krumsiek J., Arnold R., Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23:1026–1028. PubMed
Langdon T., Seago C., Jones R.N., Ougham H., Thomas H., Forster J.W. De novo evolution of satellite DNA on the rye B chromosome. Genetics. 2000;154:869–884. PubMed PMC
Lee H.-R., Neumann P., Macas J., Jiang J. Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol. 2006;23:2505–2520. PubMed
Liu J., Seetharam A.S., Chougule K., Ou S., Swentowsky K.W., Gent J.I. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 2020;21:121. PubMed PMC
Macas J., Meszaros T., Nouzova M. PlantSat: a specialized database for plant satellite repeats. Bioinformatics. 2002;18:28–35. PubMed
Macas J., Neumann P., Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics. 2007;8:1–16. PubMed PMC
Martin S.L., Li W.-L.-P., Furano A.V., Boissinot S. The structures of mouse and human L1 elements reflect their insertion mechanism. Cytogenet Genome Res. 2005;110:223–228. PubMed
Miga K.H., Koren S., Rhie A., Vollger M.R., Gershman A., Bzikadze A. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84. PubMed PMC
Nagaki K., Tanaka K., Yamaji N., Kobayashi H., Murata M. Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat. Front Plant Sci. 2015;6:1–12. PubMed PMC
Neumann P., Novák P., Hoštáková N., Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019;10:1–17. PubMed PMC
Neumann P., Oliveira L., Čížková J., Jang T., Klemme S., Novák P. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytol. 2021;229:2365–2377. PubMed
Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45:1–10. PubMed PMC
Novák P., Neumann P., Macas J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc. 2020;15:3745–3776. PubMed
Oliveira L., Neumann P., Jang T.-S., Klemme S., Schubert V., Koblížková A. Mitotic Spindle Attachment to the Holocentric Chromosomes of Cuscuta europaea Does Not Correlate With the Distribution of CENH3 Chromatin. Front Plant Sci. 2020;10:1799. PubMed PMC
Paço A., Adega F., Chaves R. LINE-1 retrotransposons: from ‘parasite’ sequences to functional elements. J Appl Genet. 2015;56:133–145. PubMed
Peona V., Weissensteiner M.H., Suh A. How complete are “complete” genome assemblies?-An avian perspective. Mol Ecol Resour. 2018;18:1188–1195. PubMed
Perea-Resa C., Blower M.D. Centromere Biology: Transcription Goes on Stage. Mol Cell Biol. 2018;38 PubMed PMC
Plohl M., Luchetti A., Meštrović N., Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82. PubMed
Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P.M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 2016;6:1–14. PubMed PMC
Satović E., Vojvoda Zeljko T., Luchetti A., Mantovani B., Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics. 2016;17:997. PubMed PMC
Schlotterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma. 2000;109:365–371. PubMed
Schubert V., Neumann P., Marques A., Heckmann S., Macas J., Pedrosa-Harand A. Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. Int J Mol Sci. 2020;21:3488. PubMed PMC
Seibt K.M., Schmidt T., Heitkam T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018;34:3575–3577. PubMed
Sonnhammer E.L.L., Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–GC10. PubMed
Szak S.T., Pickeral O.K., Makalowski W., Boguski M.S., Landsman D., Boeke J.D. Molecular archeology of L1 insertions in the human genome. Genome Biol. 2002;3:1–18. PubMed PMC
Tek A.L., Song J., Macas J., Jiang J. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics. 2005;170:1231–1238. PubMed PMC
Vanrobays E., Thomas M., Tatout C. Annual Plant Reviews. Vol. 46. John Wiley & Sons, Ltd.; Chichester, UK: 2013. Heterochromatin Positioning and Nuclear Architecture; pp. 157–190.
Vondrak T., Ávila Robledillo L., Novák P., Koblížková A., Neumann P., Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020;101:484–500. PubMed PMC
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Disruption of the standard kinetochore in holocentric Cuscuta species