Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
19-18005Y
Akademie Věd České Republiky
SVV260560
charles university
LTC20078
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34002272
DOI
10.1007/s00216-021-03388-3
PII: 10.1007/s00216-021-03388-3
Knihovny.cz E-zdroje
- Klíčová slova
- Glycopeptides, Glycoproteomics, Hydrophilic interaction liquid chromatography, Immunoglobulin G, Mixed-mode chromatography,
- MeSH
- chromatografie iontoměničová metody MeSH
- chromatografie s reverzní fází metody MeSH
- glykopeptidy izolace a purifikace MeSH
- hydrofobní a hydrofilní interakce MeSH
- imunoglobulin G izolace a purifikace MeSH
- isomerie MeSH
- lidé MeSH
- proteomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- glykopeptidy MeSH
- imunoglobulin G MeSH
Glycoproteomics is a challenging branch of proteomics because of the micro- and macro-heterogeneity of protein glycosylation. Hydrophilic interaction liquid chromatography (HILIC) is an advantageous alternative to reversed-phase chromatography for intact glycopeptide separation prior to their identification by mass spectrometry. Nowadays, several HILIC columns differing in used chemistries are commercially available. However, there is a lack of comparative studies assessing their performance, and thus providing guidance for the selection of an adequate stationary phase for different glycoproteomics applications. Here, we compare three HILIC columns recently developed by Advanced Chromatography Technologies (ACE)- with unfunctionalized (HILIC-A), polyhydroxy functionalized (HILIC-N), and aminopropyl functionalized (HILIC-B) silica- with a C18 reversed-phase column in the separation of human immunoglobulin G glycopeptides. HILIC-A and HILIC-B exhibit mixed-mode separation combining hydrophilic and ion-exchange interactions for analyte retention. Expectably, reversed-phase mode successfully separated clusters of immunoglobulin G1 and immunoglobulin G2 glycopeptides, which differ in amino acid sequence, but was not able to adequately separate different glycoforms of the same peptide. All ACE HILIC columns showed higher separation power for different glycoforms, and we show that each column separates a different group of glycopeptides more effectively than the others. Moreover, HILIC-A and HILIC-N columns separated the isobaric A2G1F1 glycopeptides of immunoglobulin G, and thus showed the potential for the elucidation of the structure of isomeric glycoforms. Furthermore, the possible retention mechanism for the HILIC columns is discussed on the basis of the determined chromatographic parameters.
Zobrazit více v PubMed
Varki A. Biological roles of glycans. Glycobiology. 2017;27(1):3–49. https://doi.org/10.1093/glycob/cww086 . PubMed DOI
Dong X, Mondello S, Kobeissy F, Ferri R, Mechref Y. Serum glycomics profiling of patients with primary restless legs syndrome using LC-MS/MS. J Proteome Res. 2020;19(8):2933–41. https://doi.org/10.1021/acs.jproteome.9b00549 . PubMed DOI
Peng WJ, Goli M, Mirzaei P, Mechref Y. Revealing the biological attributes of N-glycan isomers in breast cancer brain metastasis using porous graphitic carbon (PGC) liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Proteome Res. 2019;18(10):3731–40. https://doi.org/10.1021/acs.jproteome.9b00429 . PubMed DOI
Duivelshof BL, Jiskoot W, Beck A, Veuthey JL, Guillarme D, D'Atri V. Glycosylation of biosimilars: recent advances in analytical characterization and clinical implications. Anal Chim Acta. 2019;1089:1–18. https://doi.org/10.1016/j.aca.2019.08.044 . PubMed DOI
Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal Bioanal Chem. 2017;409(19):4483–505. https://doi.org/10.1007/s00216-017-0406-7 . PubMed DOI PMC
Kozlik P, Sanda M, Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J Chromatogr A. 2017;1519:152–5. https://doi.org/10.1016/j.chroma.2017.08.066 . PubMed DOI PMC
Kozlik P, Goldman R, Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38(17):2193–9. https://doi.org/10.1002/elps.201600547 . PubMed DOI PMC
Badgett MJ, Boyes B, Orlando R. Predicting the retention behavior of specific O-linked glycopeptides. J Biomol Tech. 2017;28(3):122–6. https://doi.org/10.7171/jbt.17-2803-003 . PubMed DOI PMC
Badgett MJ, Boyes B, Orlando R. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A. 2018;1537:58–65. https://doi.org/10.1016/j.chroma.2017.12.055 . PubMed DOI PMC
D'Atri V, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B. 2018;1080:37–41. https://doi.org/10.1016/j.jchromb.2018.02.026 . DOI
D'Atri V, Novakova L, Fekete S, Stoll D, Lauber M, Beck A, et al. Orthogonal middle-up approaches for characterization of the glycan heterogeneity of etanercept by hydrophilic interaction chromatography coupled to high-resolution mass spectrometry. Anal Chem. 2019;91(1):873–80. https://doi.org/10.1021/acs.analchem.8b03584 . PubMed DOI
Huang Y, Nie Y, Boyes B, Orlando R. Resolving isomeric glycopeptide glycoforms with hydrophilic interaction chromatography (HILIC). J Biomol Tech. 2016;27(3):98–104. https://doi.org/10.7171/jbt.16-2703-003 . PubMed DOI PMC
Kozlik P, Goldman R, Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal Bioanal Chem. 2018;410(20):5001–8. https://doi.org/10.1007/s00216-018-1150-3 . PubMed DOI PMC
Molnarova K, Kozlik P. Comparison of different HILIC stationary phases in the separation of hemopexin and immunoglobulin G glycopeptides and their isomers. Molecules. 2020;25(20):13. https://doi.org/10.3390/molecules25204655 . DOI
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic interaction chromatography. J Anal Chem. 2019;74(5):415–24. https://doi.org/10.1134/s1061934819050058 . DOI
Jandera P, Janas P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta. 2017;967:12–32. https://doi.org/10.1016/j.aca.2017.01.060 . PubMed DOI
McCalley DV. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A. 2017;1523:49–71. https://doi.org/10.1016/j.chroma.2017.06.026 . PubMed DOI
Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal Bioanal Chem. 2012;402(1):231–47. https://doi.org/10.1007/s00216-011-5308-5 . PubMed DOI
Pedrali A, Tengattini S, Marrubini G, Bavaro T, Hemstrom P, Massolini G, et al. Characterization of intact neo-glycoproteins by hydrophilic interaction liquid chromatography. Molecules. 2014;19(7):9070–88. https://doi.org/10.3390/molecules19079070 . PubMed DOI PMC
Takegawa Y, Deguchi K, Ito H, Keira T, Nakagawa H, Nishimura SI. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J Sep Sci. 2006;29(16):2533–40. https://doi.org/10.1002/jssc.200600133 . PubMed DOI
Tengattini S, Dominguez-Vega E, Temporini C, Bavaro T, Rinaldi F, Piubelli L, et al. Hydrophilic interaction liquid chromatography-mass spectrometry as a new tool for the characterization of intact semi-synthetic glycoproteins. Anal Chim Acta. 2017;981:94–105. https://doi.org/10.1016/j.aca.2017.05.020 . PubMed DOI
Lauber MA, Yu YQ, Brousmiche DW, Hua ZM, Koza SM, Magnelli P, et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem. 2015;87(10):5401–9. https://doi.org/10.1021/acs.analchem.5b00758 . PubMed DOI
Romera-Torres A, Romero-Gonzalez R, Vidal JLM, Frenich AG. Comprehensive tropane alkaloids analysis and retrospective screening of contaminants in honey samples using liquid chromatography-high resolution mass spectrometry (Orbitrap). Food Res Int. 2020;133:9. https://doi.org/10.1016/j.foodres.2020.109130 . DOI
Pavlaki A, Begou O, Deda O, Farmaki E, Dotis J, Gika H, et al. Serum-targeted HILIC-MS metabolomics-based analysis in infants with ureteropelvic junction obstruction. J Proteome Res. 2020;19(6):2294–303. https://doi.org/10.1021/acs.jproteome.9b00855 . PubMed DOI
Manzano-Sánchez L, Martínez-Martínez JA, Domínguez I, Vidal JLM, Frenich AG, Romero-González R. Development and application of a novel pluri-residue method to determine polar pesticides in fruits and vegetables through liquid chromatography high resolution mass spectrometry. Foods. 2020;9(5). https://doi.org/10.3390/foods9050553 .
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology. 2020;30(4):226–40. https://doi.org/10.1093/glycob/cwz048 . PubMed DOI
Momcilovic A, de Haan N, Ederveen ALH, Bondt A, Koeleman CAM, Falck D, et al. Simultaneous immunoglobulin A and G glycopeptide profiling for high-throughput applications. Anal Chem. 2020;92(6):4518–26. https://doi.org/10.1021/acs.analchem.9b05722 . PubMed DOI PMC
Vreeker GCM, Wuhrer M. Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem. 2017;409(2):359–78. https://doi.org/10.1007/s00216-016-0073-0 . PubMed DOI
Kadlecova Z, Kalikova K, Folprechtova D, Tesarova E, Gilar M. Method for evaluation of ionic interactions in liquid chromatography. J Chromatogr A. 1625;2020:7. https://doi.org/10.1016/j.chroma.2020.461301 . DOI
Badgett MJ, Mize E, Fletcher T, Boyes B, Orlando R. Predicting the HILIC retention behavior of the N-linked glycopeptides produced by trypsin digestion of immunoglobulin Gs (IgGs). J Biomol Tech. 2018;29(4):98–104. https://doi.org/10.7171/jbt.18-2904-002 . PubMed DOI PMC
Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis