Multidimensional chromatography coupled to tandem mass spectrometry (MS/MS), including simple sample preparation with protein precipitation, anion conversion with ammonium hydroxide, and solid-phase extraction using mixed-mode anion exchange in a 96-well plate format, has been validated for rapid simultaneous analysis of human insulin and its six analogs (lispro, glulisine, glargine, degludec, detemir, and aspart) in human plasma. This method is critical for clinical diagnostics, forensic investigations, and anti-doping efforts due to the widespread use of these substances. In the present study, improved chromatographic resolution was achieved using a first-dimension trap-and-elute configuration with an XBridge C18 (2.1 × 20 mm, 3.5 μm) trap column combined with second dimension separation on a Cortecs Ultra-High-Performance Liquid Chromatography (UHPLC) C18+ (2.1 × 100 mm, 1.6 μm) analytical column implemented within a two-dimensional-LC-MS/MS system. The total chromatographic run time was 11 min. This setup increases both the resolution and sensitivity of the method. A mobile phase consisting of 0.8% formic acid (FA) in water and 0.7% FA in acetonitrile was used for gradient elution. Bovine insulin was used as the internal standard. MS detection was performed in positive electrospray ionization mode, and the ion suppression due to matrix effects was evaluated. Validation criteria included linearity, precision, accuracy, recovery, lower limit of quantitation, matrix effect, and stability tests with and without protease inhibitor cocktail under different conditions (short-term stability, long-term stability, and freeze-thaw stability). The concentration range for all insulins was 50-15 000 pg/mL, with limits of quantification below the therapeutic reference range for all analytes. Intra-run precision ranged from 1.1% to 5.7%, inter-run precision from 0.7% to 5.9%, and overall recovery from 96.9% to 114.3%. The validated method has been implemented successfully by the Department of Forensic Medicine at our hospital for the investigation of unexplained deaths.
A set of new mixed-mode ion-exchange stationary phases is presented. The backbone of organic selectors is formed by a linear hydrocarbon chain, which is divided into two parts of various lengths by a heteroatom (oxygen or nitrogen). In all studied cases, there is a sulfonic acid moiety as the terminal group. Therefore, selectors bearing oxygen gave rise to strong cation ion-exchange stationary phases, while selectors with an embedded nitrogen atom (inducing a weak anion exchange capacity) were used to create zwitterion ion-exchange stationary phases. The new mixed-mode stationary phases were chromatographically evaluated in high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) using isocratic elution conditions to disclose their chromatographic potential. In HPLC mode, aqueous-rich reversed phase chromatography, acetonitrile-rich hydrophilic interaction liquid chromatography and methanolic ion-exchange chromatography mobile phases were employed. In these chromatographic modes, retention factors and selectivity values for a test set of basic and zwitterionic analytes were determined. The results were compared and principal component analysis for each chromatographic mode was performed. For all chromatographic modes, the component 1 in the principal component analysis reflected the elution order. The application of different mobile phases on a particular column resulted not only in variation in retention, but also in modified selectivity, and different elution order of the analytes. The orthogonality of the elution order depending on the employed mobile phase conditions was especially reflected for structurally closely related analytes, such as melatonin and N-acetyl-serotonin, tryptamine and serotonin or noradrenalin and octopamine. However, ion-exchange interactions remain the main driving force for retention. From all investigated stationary phases, the SCX 2 (C5-linker and C4-spacer) seems to be the best choice for the separation of basic analytes using different mobile phase conditions.
- MeSH
- Acetonitriles chemistry MeSH
- Anions chemistry MeSH
- Biogenic Amines isolation & purification MeSH
- Chromatography methods MeSH
- Chemistry, Pharmaceutical methods MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Ion Exchange MeSH
- Cations chemistry MeSH
- Pharmaceutical Preparations chemistry isolation & purification MeSH
- Methanol chemistry MeSH
- Water chemistry MeSH
- Publication type
- Journal Article MeSH
Capillary electrophoresis-frontal analysis (CE-FA) together with mobility shift affinity CE is the most frequently used mode of affinity CE for a study of plasma protein-drug interactions, which is a substantial part of the early stage of drug discovery. Whereas in the classic CE-FA setup the sample is prepared by off-line mixing of the interaction partners in the sample vial outside the CE instrument and after a short incubation period loaded into the capillary and analysed, in this work a new methodological approach has been developed that combines CE-FA with the mixing of interacting partners directly inside the capillary. This combination gives rise to a fully automated and versatile methodology for the characterization of these binding interactions besides a substantial reduction in the amounts of sample compounds used. The minimization of possible experimental errors due to the full involving of sophisticated CE instrument in the injection procedure, mixing and separation instead of manual manipulation is another fundamental benefit. The in-capillary mixing is based on the transverse diffusion of laminar flow profile methodology introduced by Krylov et al. using its multi-zone injection modification presented by Řemínek at al.. Actually, after the method optimization, the alternate introduction of six plugs of drug and six plugs of bovine serum protein in BGE, each injected for 3 s at a pressure of -10 mbar (-1 kPa) into the capillary filled by BGE, was found to be the best injection procedure. The method repeatability calculated as RSDs of plateau highs of bovine serum albumin and propranolol as model sample compounds were better than 3.44 %. Its applicability was finally demonstrated on the determination of apparent binding parameters of bovine serum albumin for basic drugs propranolol and lidocaine and acid drug phenylbutazone. The values obtained by a new on-line CE-FA methodology are in agreement with values estimated by classic off-line CE-FA, as well as with literature data obtained using different techniques.
- MeSH
- Diffusion MeSH
- Electrophoresis, Capillary * MeSH
- Chemistry, Pharmaceutical methods MeSH
- Blood Proteins chemistry metabolism MeSH
- Pharmaceutical Preparations metabolism MeSH
- Propranolol chemistry metabolism MeSH
- Workflow MeSH
- Serum Albumin, Bovine chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L-1 level. Linearity was confirmed up to 200 µg L-1 and LOD values were between 0.06 and 1.98 µg L-1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.
Glycoproteomics is a challenging branch of proteomics because of the micro- and macro-heterogeneity of protein glycosylation. Hydrophilic interaction liquid chromatography (HILIC) is an advantageous alternative to reversed-phase chromatography for intact glycopeptide separation prior to their identification by mass spectrometry. Nowadays, several HILIC columns differing in used chemistries are commercially available. However, there is a lack of comparative studies assessing their performance, and thus providing guidance for the selection of an adequate stationary phase for different glycoproteomics applications. Here, we compare three HILIC columns recently developed by Advanced Chromatography Technologies (ACE)- with unfunctionalized (HILIC-A), polyhydroxy functionalized (HILIC-N), and aminopropyl functionalized (HILIC-B) silica- with a C18 reversed-phase column in the separation of human immunoglobulin G glycopeptides. HILIC-A and HILIC-B exhibit mixed-mode separation combining hydrophilic and ion-exchange interactions for analyte retention. Expectably, reversed-phase mode successfully separated clusters of immunoglobulin G1 and immunoglobulin G2 glycopeptides, which differ in amino acid sequence, but was not able to adequately separate different glycoforms of the same peptide. All ACE HILIC columns showed higher separation power for different glycoforms, and we show that each column separates a different group of glycopeptides more effectively than the others. Moreover, HILIC-A and HILIC-N columns separated the isobaric A2G1F1 glycopeptides of immunoglobulin G, and thus showed the potential for the elucidation of the structure of isomeric glycoforms. Furthermore, the possible retention mechanism for the HILIC columns is discussed on the basis of the determined chromatographic parameters.
- MeSH
- Chromatography, Ion Exchange methods MeSH
- Chromatography, Reverse-Phase methods MeSH
- Glycopeptides isolation & purification MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Immunoglobulin G isolation & purification MeSH
- Isomerism MeSH
- Humans MeSH
- Proteomics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
In this work, two mixed-mode columns from a different manufacturers and one marketed as a reversed-phase column were characterized and compared in the terms of their interaction abilities, retentivity, peak symmetry, and applicability for peptide separation. All the tested columns contain octadecyl ligand and positively charged modifier, i.e. pyridyl group for the reversed-phase column XSelect CSH C18, quaternary alkylamine for mixed-mode column Atlantis PREMIER BEH C18 AX, and permanently charged moiety (details not available from the manufacturer) for mixed-mode column Luna Omega PS C18. For detailed characterization and comparison of their interaction potential, several approaches were used. First, a simple Walters test was performed to estimate hydrophobic and silanophilic interactions of the tested columns. The highest values of both parameters were observed for column Atlantis PREMIER BEH C18 AX. To investigate the effect of pH and buffer concentration on retention, mobile phases composed of acetonitrile and buffer (ammonium formate, pH 3.0; ammonium acetate pH 4.7 and pH 6.9) in various concentrations (5mM; 10mM; 15mM and 20mM) were used. The analysis of permanently charged compounds was used to describe the electrostatic interaction abilities of the stationary phases. The most significant contribution of electrostatic interactions to the retention was observed for Atlantis PREMIER BEH C18 AX column in the mobile phase with buffer of pH 3.0. A set of ten dipeptides, three pentapeptides and one octapeptide was used to investigate the effects of pH and buffer concentration on retention and peak symmetry. Each of the tested columns provides the optimal peak shape under different buffer pH and concentration. The gradient separation of the 14 tested peptides was used to verify the application potential of the tested columns for peptide separation. The best separation was achieved within 4 minutes on column Atlantis PREMIER BEH C18 AX.
In this work we utilized basic and acidic analytes to investigate the ionic interaction participation in retention behavior of selected reversed-phase and polar columns. The test analytes included nitrate, benzenesulfonate and trimethylphenylammonium ions. The fully aqueous mobile phase comprising 10 mM dichloroacetic acid buffered with ammonia solution to desirable pH was used for retention experiments. Developed method was utilized to study the ionic interactions of stationary phases in pH range between 2.5 and 9.0. We demonstrate that selected sorbents used for reversed-phase and hydrophilic interaction chromatography separations exhibit cation- or anion-exchange interactions. We compare the results to novel Atlantis PREMIER BEH C18 AX mixed-mode column that combines reversed-phase and anion-exchange interaction modes. We evaluated the relative retention strength of selected columns for anionic and cationic analytes.
The selectivity for 15 biogenic amines and amino acids shown by three capillary cation-exchange columns, IonPac CS19, CS12A and CS17 (250 × 0.4 mm ID, all from Thermo Fisher Scientific), exhibiting medium, medium low and ultra-low hydrophobicity, and either carboxylic or mixed carboxylic/phosphonic acid functional groups, was investigated. A mixed mode retention mechanism was revealed with ion-exchange, hydrophobic and hydrogen bonding interactions contributing to retention of polar organic molecules on these phases. The relative impact of these interactions was evaluated via the effect of concentration and pH of the eluent (methanesulfonic acid) on the retention of fifteen structurally similar biogenic amines and amino acids. Strong hydrogen bonding interactions were observed between the solute amino acid carboxylic groups and cation-exchange groups from the ion-exchangers. This is the first time retention data correlated with logP data has revealed clustering of the solutes in two groups, according to the presence or absence of a carboxylic acid functional group. In addition, stronger retention behaviour was found for the IonPac CS12A cation-exchanger, containing both carboxylic and phosphonic functional groups. Further assessment of the orthogonality plots of retention factors for the three stationary phases revealed that the columns exhibited different complimentary selectivity that can be utilised to achieve specific separations.
In this work, we have investigated the predictive properties of mixed-mode retention model and oligomeric mixed-mode model, taking into account the contribution of monomeric units to the retention, in hydrophilic interaction liquid chromatography. The gradient retention times of native maltooligosaccharides and their fluorescent derivatives were predicted in the oligomeric series with number of monomeric glucose units in the range from two to seven. The maltooligosaccharides were separated on a packed column with carbamoyl-bonded silica stationary phase and 15 gradient profiles with different initial and final mobile phase composition were used with the gradient times 5; 7.5 and 10min. The predicted gradient retention times were compared for calculations based on isocratic retention data and gradient retention data, which provided better accuracy of the results. By comparing two different mobile phase additives, the more accurate retention times were predicted in mobile phases containing ammonium acetate. The acidic derivatives, prepared by reaction of an oligosaccharide with 2-aminobenzoic acid or 8-aminonaphthalene-1,3,6-trisulfonic acid, provided more accurate predictions of the retention data in comparison to native oligosaccharides or their neutral derivatives. The oligomeric mixed-mode model allowed prediction of gradient retention times using only one gradient profile, which significantly speeded-up the method development.
The establishment of an efficient reaction mixture represents a crucial part of capillary electrophoresis based on-line enzymatic assays. For ketamine N-demethylation to norketamine mediated by the cytochrome P450 3A4 enzyme, mixing of enzyme and reactants in the incubation buffer at physiological pH was studied by computer simulation. A dynamic electrophoretic simulator that encompasses Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure driven flow was utilized. The simulator in the diffusion mode was used to predict transverse diffusional reactant mixing occurring during hydrodynamic plug injection of configurations featuring four and seven plugs. The same simulator in the electrophoretic mode was applied to study electrophoretic reactant mixing caused by voltage application in absence of buffer flow. Resulting conclusions were experimentally verified with enantioselective analysis of norketamine in a background electrolyte at low pH. Furthermore, simulations visualize buffer changes that occur upon power application between incubation buffer and background electrolyte and have an influence on the reaction mixture.