Selinexor, bortezomib, and dexamethasone versus bortezomib and dexamethasone in previously treated multiple myeloma: Outcomes by cytogenetic risk

. 2021 Sep 01 ; 96 (9) : 1120-1130. [epub] 20210705

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu klinické zkoušky, fáze III, časopisecké články, randomizované kontrolované studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34062004

In the phase 3 BOSTON study, patients with multiple myeloma (MM) after 1-3 prior regimens were randomized to once-weekly selinexor (an oral inhibitor of exportin 1 [XPO1]) plus bortezomib-dexamethasone (XVd) or twice-weekly bortezomib-dexamethasone (Vd). Compared with Vd, XVd was associated with significant improvements in median progression-free survival (PFS), overall response rate (ORR), and lower rates of peripheral neuropathy, with trends in overall survival (OS) favoring XVd. In BOSTON, 141 (35.1%) patients had MM with high-risk (presence of del[17p], t[4;14], t[14;16], or ≥4 copies of amp1q21) cytogenetics (XVd, n = 70; Vd, n = 71), and 261 (64.9%) exhibited standard-risk cytogenetics (XVd, n = 125; Vd, n = 136). Among patients with high-risk MM, median PFS was 12.91 months for XVd and 8.61 months for Vd (HR, 0.73 [95% CI, (0.4673, 1.1406)], p = 0.082), and ORRs were 78.6% and 57.7%, respectively (OR 2.68; p = 0.004). In the standard-risk subgroup, median PFS was 16.62 months for XVd and 9.46 months for Vd (HR 0.61; p = 0.004), and ORRs were 75.2% and 64.7%, respectively (OR 1.65; p = 0.033). The safety profiles of XVd and Vd in both subgroups were consistent with the overall population. These data suggest that selinexor can confer benefits to patients with MM regardless of cytogenetic risk. ClinicalTrials.gov identifier: NCT03110562.

Baylor University Medical Center Dallas Texas USA

Charles University and General Hospital Prague Czech Republic

CHU Lille Service des Maladies du Sang F 59000 Lille France

City Clinical Hospital No 4 of Dnipro City Council Dnipro Ukraine

Clinic of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic

Cross Cancer Institute University of Alberta Edmonton Alberta Canada

Dana Farber Cancer Institute Boston Massachusetts USA

Department of Hemato oncology University Hospital Ostrava University of Ostrava Ostrava Czech Republic

Department of Hematology Cherkassy Regional Oncological Center Cherkassy Ukraine

Department of Hematology CHU la Miletrie and Inserm CIC 1402 Poitiers France

General Hospital Evangelismos Athens Greece

Hospital Universitario de Salamanca Salamanca Spain

Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA

Imperial College London London UK

Institute of Blood Pathology and Transfusion Medicine of National Academy of Medical Sciences of Ukraine Lviv Ukraine

Karyopharm Therapeutics Inc Newton Massachusetts USA

Kings College Hospital NHS Foundation Trust London UK

Medical University of Silesia Katowice Poland

National Cancer Institute Ukraine Kiev Ukraine

Nil Ratan Sircar Medical College and Hospital Kolkata India

Norton Cancer Institute St Matthews Campus Louisville Kentucky USA

School of Medicine National and Kapodistrian University of Athens School of Medicine Athens Greece

Seràgnoli Institute of Hematology Bologna University School of Medicine Bologna Italy

Simmons Comprehensive Cancer Center UT Southwestern Medical Center Dallas Texas USA

State Cancer Institute Indira Gandhi Institute of Medical Sciences Patna India

University Hospital Hotel Dieu Nantes France

University Hospitals of Leicester NHS Trust Leicester UK

University of Calgary Charbonneau Cancer Research Institute Calgary Alberta Canada

University of Maryland Greenebaum Comprehensive Cancer Center Baltimore Maryland USA

University of Melbourne St Vincent's Hospital Melbourne Victoria Australia

Zobrazit více v PubMed

Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma‐cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem‐cell transplantation. Blood. 2006;108:1724‐1732. PubMed PMC

Fonseca R, Bergsagel PL, Drach J, et al. International myeloma working group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23:2210‐2221. PubMed PMC

Sonneveld P, Avet‐Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high‐risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127:2955‐2962. PubMed PMC

Shah V, Sherborne AL, Walker BA, et al. Prediction of outcome in newly diagnosed myeloma: a meta‐analysis of the molecular profiles of 1905 trial patients. Leukemia. 2018;32:102‐110. PubMed PMC

Avet‐Loiseau H, Durie BGM, Cavo M, et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: An International Myeloma Working Group collaborative project. Leukemia. 2013;27:711‐717. PubMed PMC

Gandhi UH, Senapedis W, Baloglu E, et al. Clinical implications of targeting XPO1‐mediated nuclear export in multiple myeloma. Clin Lymphoma Myeloma Leuk. 2018;18:335‐380. PubMed

Chari A, Vogl DT, Gavriatopoulou M, et al. Oral selinexor–dexamethasone for triple‐class refractory multiple myeloma. N Engl J Med. 2019;381:727‐738. PubMed

Azizian NG, Azizian NG, Li Y, Li Y. XPO1‐dependent nuclear export as a target for cancer therapy. J Hematol Oncol. 2020;13:1‐9. PubMed PMC

Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C. Nucleo‐cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol. 2014;7:85. 10.1186/s13045-014-0085-1 PubMed DOI PMC

Tai YT, Landesman Y, Acharya C, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia. 2014;28:155‐165. PubMed PMC

Chanukuppa V, Paul D, Taunk K, et al. XPO1 is a critical player for bortezomib resistance in multiple myeloma: a quantitative proteomic approach. J Proteomics. 2019;209:103504. PubMed

Bhutani M, Zhang Q, Friend R, et al. Investigation of a gene signature to predict response to immunomodulatory derivatives for patients with multiple myeloma: an exploratory, retrospective study using microarray datasets from prospective clinical trials. Lancet Haematol. 2017;4:e443‐e451. PubMed

Culjkovic‐Kraljacic B, Baguet A, Volpon L, Amri A, Borden KLB. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2012;2:207‐215. PubMed PMC

Jardin F, Pujals A, Pelletier L, et al. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B‐cell lymphoma. Am J Hematol. 2016;91:923‐930. PubMed

Golomb L, Bublik DR, Wilder S, et al. Importin 7 and exportin 1 link c‐Myc and p53 to regulation of ribosomal biogenesis. Mol Cell. 2012;45:222‐232. PubMed PMC

Schmidt J, Braggio E, Kortuem KM, et al. Genome‐wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT‐276. Leukemia. 2013;27:2357‐2365. PubMed PMC

Turner JG, Kashyap T, Dawson JL, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7:78896‐78909. PubMed PMC

Bahlis NJ, Sutherland H, White D, et al. Selinexor plus low‐dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood. 2018;132:2546‐2554. PubMed PMC

Grosicki S, Simonova M, Picka I, et al. Once‐weekly selinexor, bortezomib, and dexamethasone versus twice‐weekly bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open‐label phase 3 trial. Lancet. 2020;396:1563‐1573. PubMed

XPOVIO® (selinexor) , package insert. 2020. http://www.fda.gov/medwatch. Accessed February 1, 2021.

Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328‐e346. PubMed

Fonseca R, Oken MM, Greipp PR. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance. Blood. 2001;98:1271‐1272. PubMed

Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma. Cancer Research. 2004;64:1546‐1558. PubMed

An G, Li Z, Tai YT, et al. The impact of clone size on the prognostic value of chromosome aberrations by fluorescence in situ hybridization in multiple myeloma. Clin Cancer Res. 2015;21:2148‐2156. PubMed

Hanamura I. Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers (Basel). 2021;13:1‐16. PubMed PMC

Mateos M, Gavriatopoulou M, Facon T, et al. Effect of prior treatments on selinexor, bortezomib, and dexamethasone in previously treated multiple myeloma. J Hematol Oncol. 2021;14(1):1‐5. PubMed PMC

Weisel K, Spencer A, Lentzsch S, et al. Daratumumab, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma: subgroup analysis of CASTOR based on cytogenetic risk. J Hematol Oncol. 2020;13:115. 10.1186/s13045-020-00948-5 PubMed DOI PMC

An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99:353‐359. PubMed PMC

Locher M, Steurer M, Jukic E, et al. The prognostic value of additional copies of 1q21 in multiple myeloma depends on the primary genetic event. Am J Hematol. 2020;95:1562‐1571. PubMed PMC

Richardson PG, Oriol A, Beksac M, et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open‐label, phase 3 trial. Lancet Oncol. 2019;20:781‐794. PubMed

Kashyap T, Argueta C, Aboukameel A, et al. Selinexor, a selective inhibitor of nuclear export (SINE) compound, acts through NF‐κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget. 2016;7:78883‐78895. PubMed PMC

Argueta C, Kashyap T, Klebanov B, et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget. 2018;9:25529‐25544. PubMed PMC

Turner JG, Dawson JL, Grant S, et al. Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol. 2016;9:73. PubMed PMC

Liu Y, Chen C, Xu Z, et al. Deletions linked to TP53 loss drive cancer through p53‐independent mechanisms. Nature. 2016;531:471‐475. PubMed PMC

Nakayama R, Zhang YX, Czaplinski JT, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581‐16592. PubMed PMC

Kalff A, Spencer A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer J. 2012;2:e89‐e89. PubMed PMC

Senapedis WT, Baloglu E, Landesman Y. Clinical translation of nuclear export inhibitors in cancer. Semin Cancer Biol. 2014;27:74‐86. PubMed

Cao S, Liu J, Song L, Ma X. The protooncogene c‐Maf is an essential transcription factor for IL‐10 gene expression in macrophages. J Immunol. 2005;174:3484‐3492. PubMed PMC

Wang AY, Liu H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 2019;6:6. 10.21037/sci.2019.02.03 PubMed DOI PMC

Annunziata CM, Hernandez L, Davis RE, et al. A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood. 2011;117:2396‐2404. PubMed PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03110562

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace